Analytical Techniques for The Evaluation of Lead Concentrations in Food for Human Consumption

Authors

  • KARINA ALVARADO PEREZ
  • DORIS ESENARRO
  • LUIS ENRIQUE CRUZ PAASACA
  • ALCIRA CORDOVA
  • ROCÍO PAREJA USAQUI
  • CELESTE CERVANTES TOLEDO
  • ROMINA GUERRERO OSORIO
  • MAX BASUALDO HUERE

Keywords:

Analysis Techniques, Concentrations in Food, Human Consumption

Abstract

 In the present work, a review was carried out on the studies carried out in different parts of the world, on the analysis techniques used to evaluate the concentrations of lead in various products for human consumption. A review was made of 25 arbitrary scientific articles from three databases SCOPUS, Science direct and Google academic, published from 2016 to February 2021, identifying 15 countries of origin, the country with the highest number of publications was the results with the Codex quality standard.

References

León NM. Aplicación de la cromatografía líquida acoplada a la espectrometría de masas de alta resolució para el control alimentario y la evaluación de la exposición a contaminantes y residuos. Valencia, España.

Mahboube S, Habibollahi S, Akbari A. Centrifuge-less deep eutectic solvent based magnetic nanofluid- linked air-agitated liquid–liquid microextraction coupled with electrothermal atomic absorption spectrometry for simultaneous determination of cadmium, lead, copper, and arsenic in food sample. Food

Chemistry. 2019; 281: p. 304-311.

Gonzales G, Zevallos A, Gonzales-Castañeda C, Nuñez D, Gastañaga C, Cabezas C, et al. Contaminación ambiental, variabilidad climática y cambio climático: Una revision del impacto en la salud de la población peruana. Rev Peru Med Exp Salud Publica. 2014;: p. 547-556.

Dualde P. Aplicación de la cromatografía líquida acoplada a la espectrometría de masas para la evaluación de la exposición interna a contaminantes alimentarios. Valencia, España.

Marín S. Estudios de dieta total. Exposición de la población de la comunidad Valenciana a metales y evaluación del riesgo. Valencia: Universidad de Valencia, Departamento de Medicina Preventiva y Salud Pública, Ciencias de la Alimentación, Toxicología y Medicina Legal.

Navas I, Mojica P, Valveerde I, Hernández E, Garcia A. Plomo en productos cárnicos de caza mayor: Estimación de riesgos por su consumo. Murcia, España: Servicio de Toxicología y Veterinaria Forense,

Universidad de Murcía.

Ortega JA, Ferrís J, Ortí A, López JA, Cánovas A, García J, et al. Contaminantes medioambientales en la alimentacion..

Pinedo MA, Sanchez CP, Bonifaz JM, Guamuro C, Patiño JM. Desequilibrio ecológico y la contaminación alimentaria. Moyobamaba – San Martín, Perú.

Yue'e Peng WGPZLJ. Heat-assisted slurry sampling GFAAS method for determination of lead in food standard reference materials. Journal of Food Composition and Analysis. 2015; 42: p. 78-83.

OMS. Programa conjunto FAO/OMS sobre normas alimentarias comité del Codex sobre aditivos alimentarios y contaminantes de los alimentos. Beijing, República Popular de China.

Shang D, Hao YZY, Delin D, Yongdong Z. Direct determination of Pb in raw milk by graphite furnace atomic absorption spectrometry (GF AAS) with electrothermal atomization sampling from slurries. Pekin.

Alejandro Santos, Mejía Domínguez , García Gargatt , Jaimes Vilcherrez , Zafra Cruzado Z, Medina Oporto. Metales pesados en zanahoria (Daucus carota) que se comercializan en el Mercado Centenario de Huacho – 2019. Big Bang. 2019.

López D , García O. M, Madueño V. , Bautista C. , Marín V. M, Olórtegui C.. Metales pesados en tres variedades de Solanum tuberosum L. (papa) expendidos en el mercado mayorista de Santa Anita(Lima- Perú). Ciencia e investigación. 2020;: p. 25 - 30.

Romero Estévez D, Yánez Jacome G, Simbaña Farinango K, Navarrete H. Content and the relationship between cadmium, nickel, and lead concentrations in Ecuadorian cocoa beans from nine provinces. Food Control. 2019; 106.

Chirinos Peinado DM, Castro Bedrinana JI. Lead and cadmium blood levels and transfer to milk in cattle reared in a mining area. Heliyon. 2020;: p. e03579.

Stull AJ,AJW,TMAE,IHB,&CWW. Los productos sustitutivos de comidas líquidos y sólidos afectan de manera diferente el apetito posprandial y la ingesta de alimentos en adultos mayores. Journal of the American Dietetic Association.

Martínez D, Grindlay G, Gras L, Mora J. Determination of cadmium and lead in wine samples by means of dispersive liquid–liquid microextraction coupled to electrothermal atomic absorption spectrometry. Journal of Food Composition and Analysis. 2018;: p. 178 - 183.

Carrera Leal G, Mattiazzi P, Rovasi F, Dal Molin T, Bohrer D, Cícero do Nacimento P, et al. Determination of lead in dietary supplements by high-resolution continuum-source graphite furnace atomic absorption spectrometry with direct solid sampling. Journal of Food Composition and Analysis. 2020; 86: p. 1-6.

Razali Ishaka A, Mahmud Zuhdi MS, Yusmaidie Aziz M. Determination of lead and cadmium in tilapia fish (Oreochromis niloticus) from selected areas in Kuala Lumpur. The Egyptian Journal of Aquatic Research. 2020; 46(3): p. 221-225.

Sung CY, Park CB. The effect of site- and landscape-scale factors on lead contamination of leafy vegetables grown in urban gardens. Landscape and Urban Planning. 2018; 177: p. 38 - 46.

Tejada Pacus FA, Fernández Jaimes AM, Mejía Dominguez CM. Determinación de Metales Pesados en Mariscos Comercializados en el Puerto de Huacho, 2015. Big Bang Fautiniano. 2016; 5(4).

Guérin T, Le Calvez E, Zinck J, Bemrah N, Sirot V, Leblanc JC, et al. Levels of lead in foods from the first French total diet study on infants and toddlers. Food Chemistry. 2017; 237: p. 849-856.

Cruz Junior R, Chagas A, Felix Caio , Souza R, Silva L, Lemos V, et al. A closed inline system for sample digestion using 70% hydrogen peroxide and UV radiation. Determination of lead in wine employing ETAAS. Talanta. 2019;: p. 479-484.

Erarpat S, Özzeybek G, Selali Chormey D, Bakırdere S. Determination of lead at trace levels in mussel and sea water samples using vortex assisted dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry. Chemosphere. 2017; 189: p. 180 - 185.

Zounr RA, Tuzen M, Yar Khu M. A simple and green deep eutectic solvent based air assisted liquid phase microextraction for separation, preconcentration and determination of lead in water and food samples by graphite furnace atomic absorption spectrometry. Journal of Molecular Liquids. 2018; 259: p. 220 - 226.

El Salous A,&PA. Determinación de cadmio, plomo y ocratoxina en la harina proveniente de las cascarillas de dos variedades de cacao en Ecuador. Revista de I+D Tecnológico. 2018; 14(1): p. 49-53.

Talio M, Muñoz V, Acosta M, Fernández L. Determination of lead traces in honey using a fluorimetric method. Food Chemistry. 2019; 298.

Vázquez J, Sangurima C, Alvarez-Vera M. Concentraciones de plomo (Pb) en cultivos de lechuga (Lactuca sativa) en Azuay, Ecuador. Scientia Agropecuaria. 2019; 10(3).

Milão de Oliveira T, Peres J, Felsner ML, Justi KC. Direct determination of Pb in raw milk by graphite furnace atomic absorption spectrometry (GF AAS) with electrothermal atomization sampling from slurries. Food Chemistry. 2017; 15(229).

Alzahrani HR, Kumakli H, Ampiah E, Mehari T, Thornton AJ, Babyak CM, et al. Determination of macro, essential trace elements, toxic heavy metal concentrations, crude oil extracts and ash composition from Saudi Arabian fruits and vegetables having medicinal values. Arabian Journal of Chemistry. 2018; 10(7): p. 906-913.

HU S, XIONG X, HUANG S, LAI X. Preparation of Pb(II) Ion Imprinted Polymer and Its Application as the Interface of an Electrochemical Sensor for Trace Lead Determination. Analytical Sciences. 2016; 32: p. 975-980.

Kazantzi V, Kabir A, Furton K, Anthemidis A. Fabric fiber sorbent extraction for on-line toxic metal determination by atomic absorption spectrometry: Determination of lead and cadmium in energy and soft drinks. Microchemical Journal. 2018; 137: p. 285-291.

Fathabad AE, Shariatifar N, Moazzen M, Nazmara S, Fakhri Y, Alimohammdi M, et al. Determination of heavy metal content of processed fruit products from Tehran's market using ICP- OES: A risk assessment study. Food and Chemical Toxicology. 2018;: p. 436-446.

Aendo P, Thongyuan S, Songserm T, Tulayakul P. Carcinogenic and non-carcinogenic risk assessment of

heavy metals contamination in duck eggs and meat as a warning scenario in Thailand. Science of the Total Environment. 2019;: p. 215–222.

Downloads

Published

2021-06-30

How to Cite

PEREZ, K. A. ., ESENARRO, D. ., PAASACA, L. E. C. . ., CORDOVA, A. ., USAQUI, R. P. . ., TOLEDO, C. C. ., OSORIO, R. G. ., & HUERE, M. B. . (2021). Analytical Techniques for The Evaluation of Lead Concentrations in Food for Human Consumption. The Journal of Contemporary Issues in Business and Government, 27(3), 588–605. Retrieved from https://cibgp.com/au/index.php/1323-6903/article/view/1638

Most read articles by the same author(s)