Multiobjective Transportation Problem Using Fuzzy Decision Variable ThroughMulti-Choice Programming
Keywords:
Fuzzy Variable, Goal Programming, Multiobjective Decision-making, Multiple-Choice Programming, Transportation ProblemAbstract
Using fuzzy decision variables, this work examines the examination of the Multi-Objective Transportation Problem (MOTP). When solving a Transportation Problem, the decision variable is usually considered as a real variable. There are a lot of multi-choice fuzzy numbers in this work, but the decision variable in each node is chosen from a collection of those values. Multiobjective Fuzzy Transportation Problems are created when numerous goals are included in a transportation issue with a fuzzy decision variable (MOFTP). We provide a novel mathematical model of MOFTP that incorporates fuzzy goals for each of the objective functions. After that, the multi-choice goal programming methodology is used to define the model's solution method. For further proof of this article's value, a numerical example is provided.
Downloads
References
Abd El-Wahed Waiel, F. (2001). A multiobjective transportation problem under fuzziness. Fuzzy Sets and Systems, 117(1), 27–33. doi:10.1016/S0165-0114(98)00155-9
Beauchamp, H., Novoa, C., & Ameri, F. (2015). Supplier selection and order allocation based on integer programming. International Journal of Operations Research and Information Systems, 6(3), 60–79.
Chang, C. T. (2007). Multi-choice goal programming. Omega, 35(4), 389–396. doi:10.1016/j.omega.2005.07.009
Chang, C. T. (2008). Revised multi-choice goal programming. Applied Mathematical Modelling, 32(12), 2587–2595. doi:10.1016/j.apm.2007.09.008
Chang, C. T., Ku, C. Y., & Ho, H. P. (2010). Fuzzy multi-choice goal programming for supplier selection.
International Journal of Operations Research and Information Systems, 1(3), 28–52. doi:10.4018/joris.2010070103
Charnes, A., Cooper, W. W., & Ferguson, R. (1955). Optimal estimation of executive compensation by linear programming. Management Science, 1(2), 138–151. doi:10.1287/mnsc.1.2.138
Das, M., Roy, R., Dehuri, S., & Cho, S. B. (2011). A new approach to associative classification based on binary multiobjective particle swarm optimization. International Journal of Applied Metaheuristic Computing, 2(2), 51–73. doi:10.4018/jamc.2011040103
Datta, S., Nandi, G., Bandyopadhyay, A., & Pal, P. K. (2010). Solution of correlated multi-response optimization problem: Case study in submerged arc welding. International Journal of Operations Research and Information Systems, 1(4), 22–46. doi:10.4018/joris.2010100102
Ebrahimnejad, A., Nasseri, S. H., & Mansourzadeh, S. M. (2011). Bounded primal simplex algorithm for bounded linear programming with fuzzy cost coefficients. International Journal of Operations Research and Information Systems, 2(1), 96–120. doi:10.4018/joris.2011010105
Hasan, M. K., & Ban, X. (2013). A link-node nonlinear complementarity model for a multiclass simultaneous transportation dynamic user equilibria. International Journal of Operations Research and Information Systems, 4(1), 27–48. doi:10.4018/joris.2013010102
Hitchcock, F. L. (1941). The distribution of a product from several sources to numerous localities. Journal of Mathematics and Physics, 20(1-4), 224–230. doi:10.1002/sapm1941201224
Ignizio, J. P. (1976). Goal programming and extensions. Lexington, MA: Lexington Books.
Koopmans, T. C. (1949). Optimum utilization of the transportation System. Econometrica, 17, 136–146. doi:10.2307/1907301
Kumar, A., & Kaur, A. (2011). Methods for solving fully fuzzy transportation problems based on classical transportation methods. International Journal of Operations Research and Information Systems, 2(4), 52–71. doi:10.4018/joris.2011100104
Kumar, P. S., & Hussain, R. J. (2016). A simple method for solving fully intuitionistic fuzzy real life assignment problem. International Journal of Operations Research and Information Systems, 7(2), 39–61. doi:10.4018/ IJORIS.2016040103
Lee, S. M. (1972). Goal programming for decision analysis. Philadelphia: Auerbach Publishers.
Liao, C. N. (2009). Formulating the multi-segment goal programming. Computers & Industrial Engineering, 56(1), 138–141. doi:10.1016/j.cie.2008.04.007
Mahapatra, D. R., Roy, S. K., & Biswal, M. P. (2010). Stochastic based on multiobjective transportation problemsinvolving normal randomness. Advanced Modeling and Optimization, 12(2), 205–223.
Mahapatra, D. R., Roy, S. K., & Biswal, M. P. (2013). Multi-choice stochastic transportation problem involving extreme value distribution. Applied Mathematical Modelling, 37(4), 2230–2240. doi:10.1016/j.apm.2012.04.024
Maity, G., & Roy, S. K. (2014). Solving multi-choice multiobjective transportation problem: a utility functionapproach. Journal of Uncertainty Analysis and Applications. doi:10.1186/2195-5468-2-11
Maity, G., & Roy, S. K. (2015). (Forthcoming). Solving multiobjective transportation problem with interval goal using utility function approach. International Journal of Operational Research.
Maity, G., & Roy, S. K. (2016). Solving a multiobjective transportation problem with nonlinear cost and multi- choice demand. International Journal of Management Science and Engineering Management, 11(1), 62–70. doi:10.1080/17509653.2014.988768
Mangara, B. K. (2012). Modeling multi- criteria promotional strategy based on fuzzy goal programming. In E-Marketing: Concepts, Methodologies, Tools, and Applications. doi:10.4018/978- 1-4666-1598-4.ch015
Marbini, A. H., Saati, S., & Tavana, M. (2011). Data envelopment analysis with fuzzy parameters: An interactive approach. International Journal of Operations Research and Information Systems, 2(3), 39–53. doi:10.4018/ joris.2011070103
Mariya, A. S., & Suhl, L. (2012). A multi-criteria multi-level group decision method for supplier selectionand order allocation. International Journal of Strategic Decision Sciences, 3(1), 81– 105. doi:10.4018/ IJSDS.2012010103
Midya, S., & Roy, S. K. (2014). Single-sink, fixed-charge, multiobjective, multi-index stochastic transportation problem. American Journal of Mathematical and Management Sciences, 33(4), 300– 314. doi:10.1080/01966 324.2014.942474
Narasimhan, R. (1980). Goal programming in a fuzzy environment. Decision Sciences, 11(2), 325–336. doi:10.1111/j.1540-5915.1980.tb01142.x
Pan, L., Chu, C. K. S., Han, G., & Huang, J. Z. (2011). A heuristic algorithm for the inner-city multi-drop container loading problem. International Journal of Operations Research and Information Systems, 2(3), 1–19. doi:10.4018/joris.2011070101
Pattnaik, M. (2015). Decision-making approach to fuzzy linear programming (FLP) problems with post optimal analysis. International Journal of Operations Research and Information Systems, 6(4), 75– 90. doi:10.4018/ IJORIS.2015100105
Roy, S. K. (2014). Multi-choice stochastic transportation problem involving weibull distribution. InternationalJournal of Operational Research, 21(1), 38–58. doi:10.1504/IJOR.2014.064021
Roy, S. K., & Mahaparta, D. R. (2014). Solving solid transportation problem with multi-choice cost and stochastic supply and demand. International Journal of Strategic Decision Sciences, 5(3), 1– 26. doi:10.4018/ ijsds.2014070101
Roy, S. K., Mahaparta, D. R., & Biswal, M. P. (2012). Multi-choice stochastic transportation problem with exponential distribution. Journal of Uncertain Systems, 6(3), 200–213.
Roy, S. K., & Mahapatra, D. R. (2011). Multiobjective interval-valued transportation probabilistic problem involving log-normal. International Journal of Mathematics and Scientific Computing, 1(2), 14–21.
Singh, S. P., Chauhan, M. K., & Singh, P. (2015). Using multi-criteria futuristic fuzzy decision hierarchy in SWOT analysis: An application in tourism industry. International Journal of Operations Research and InformationSystems, 6(4), 38–56. doi:10.4018/IJORIS.2015100103
Tabrizi, B. B., Shahanaghi, K., & Jabalameli, M. S. (2012). Fuzzy multi-choice goal programming. Applied Mathematical Modelling, 36(4), 1415–1420. doi:10.1016/j.apm.2011.08.040
Tamiz, M., Jones, D. F., & Romero, C. (1998). Goal programming for decision-making: An overview of the current state-of-the-art. European Journal of Operational Research, 111(3), 569– 581. doi:10.1016/S0377- 2217(97)00317-2
Verma, R., Biswal, M. P., & Biswas, A. (1997). Fuzzy programming technique to solve multiobjective transportation problems with some non-linear membership functions. Fuzzy Sets and Systems, 91(1), 37–43. doi:10.1016/S0165-0114(96)00148-0
Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45–55. doi:10.1016/0165-0114(78)90031-3
Downloads
Published
How to Cite
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.