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ABSTRACT

Our study explores various Advanced Portfolio Diversification (APD) techniques,
specifically Hierarchical Clustering (HC) with Hierarchical Principal Component Analysis
(HPCA) and Dynamic Time Warping (DTW), to address the inherent estimation challenges
associated with the traditional Mean-Variance (MV) Analysis framework. We find that these
APD techniques significantly outperform the MV strategy in the longterm horizon across
multiple risk-adjusted evaluation metrics. This superior performance is due to (1) the more
diverse weight allocation of HC models and (2) the flexibility of HC models in selecting
different risk measures. By utilizing advanced hierarchical clustering network approaches
combined with DTW, these innovative methods refine the diversification process, mitigating
most of the problems incurred by the MV framework, such as its strict assumptions and
tendency to create portfolios concentrated in a few assets.
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1. Introduction

Advanced Portfolio Diversification (APD) is a critical aspect of Quantitative Wealth and
Investment Management (QWIM), focusing on improving the Sharpe ratio, reducing sector
exposures and volatility, and mitigating skewness and tail correlations during market
downturns. The Mean-Variance (MV) Analysis framework Markowitz (1989) is central to
data-driven investment strategies, balancing risk against expected returns to construct
optimal portfolios for efficient risk diversification without compromising expected gains. MV
achieves this through an efficient frontier, representing asset combinations that optimize
return for a given level of risk.

Despite its theoretical appeal, MV often underperforms in real-world applications, failing to
meet expectations. It is criticized for its sensitivity to errors in estimating input parameters
like expected asset returns and covariance matrices, where minor changes can drastically
alter the optimal portfolio composition. This issue is compounded by the difficulties in
accurately predicting returns and the need for extensive, reliable historical data, with
uncertainties in returns impacting outcomes more significantly than those in the covariance
matrix [Chen and Zhao (2003)]. MV’s limitations include its assumption of normal asset
return distributions, neglect of investor risk preferences, and a tendency to create overly
concentrated portfolios vulnerable to input fluctuations [Tsiang (1989); Eichner (2008)].

This research explores APD strategies that overcome the traditional MV framework’s
shortcomings. By implementing sophisticated Hierarchical Clustering (HC) with Hierarchical
Principal Component Analysis (HPCA) and Dynamic Time Warping (DTW), we introduce
innovative approaches to portfolio optimization. These methods address common
estimation challenges of MV, utilizing structured clustering and time series similarity
algorithms to amend MV’s weaknesses. Our comparative analysis shows that these
advanced portfolio management strategies significantly enhance long-term performance
and resilience, as reflected by various risk-adjusted metrics. HC models achieve this by
providing broader diversification in weight allocation and greater flexibility in the choice of
risk measures.

2. Literature Review

2.1. Criticism of MV Framework

The classic MV framework remains a cornerstone of investment management [Markowitz
(1989)], yet it has faced increasing scrutiny. Despite its widespread use, many scholars have
identified significant practical challenges with MV theory [Chen and Zhao (2003); Tsiang
(1989); Eichner (2008)]. Yuan and Zhou (2022) highlight the difficulty of outperforming the



naive 1/N diversification strategy, noting the biases in estimated investment strategies,
particularly when the dimensionality is high relative to the sample size. Additionally, Kinlaw
et al. (2023) critique the traditional reliance on correlation measures for evaluating an
asset’s diversification potential.

2.2. Advancements in Portfolio Diversification

In response, academic discourse has broadened to include a variety of advanced statistical
methods aimed at refining diversification strategies. Notably, Chua et al. (2009) discuss
fullscale optimization as a technique that potentially offers better diversification by
managing conditional correlations more effectively. Similarly, Martellini and Milhau (2018)
propose a factor-based framework that promises more effective measurement and
management of diversification across multi-asset portfolios. Concurrently, Braga et al. (2023)
introduce kurtosisbased risk metrics and a kurtosis-based risk parity strategy to distribute
the responsibility for portfolio returns’ dispersion more evenly among assets, providing an
alternative perspective on APD.

2.3.  Emergence of Hierarchical Methods

In recent decades, hierarchical methods for portfolio diversification have emerged to
address the limitations of previous approaches. Pfitzinger and Katzke (2023) introduce a
Convex Hierarchical Optimization framework (CHI) that aims to optimize portfolio
diversification across distinct risk clusters. Fusai et al. (2020) advocate for an Equally
Diversified Portfolio (EDP), laying the foundational principles for the Hierarchical Equal Risk
Contribution (HERC) strategy. Building on this, Raffinot (2018) elaborates on the HERC
approach, exploring its implementation and effectiveness within hierarchical asset
allocation. Ibanez (2023) presents a diversified spectral portfolio using unsupervised
learning methods, such as hierarchical agglomerative clustering, to achieve robust
diversification. Further innovations include the Hierarchical Risk Parity (HRP) model by
Jaeger et al. (2021), the HPCA strategy for modeling asset correlations by Avellaneda (2020);
Serur and Avellaneda (2020), and the DTW approach by Lim and Ong (2021); Lim and Ng
(2022), which offers a novel method for clustering assets based on their time-series patterns.

The maturation of HC strategies, combined with the integration of Machine Learning (ML),
signifies a pivotal shift towards more sophisticated financial strategies, highlighting the
sector’s increasing reliance on computational power and algorithmic insights. The growing
field of ML for portfolio diversification represents a significant evolution in financial strategy,
driven primarily by variations in hierarchical clustering. Schwendner et al. (2021) emphasize
the potential for enhanced performance through careful implementation, while noting that
the definitive benefits and practicality of such approaches remain to be fully established.
This discussion becomes particularly relevant in the context of ML, where Deep
Reinforcement Learning (DRL), a key subset of ML, plays a crucial role in advancing portfolio
diversification strategies, as extensively explored by Millea and Edalat (2022); Sood et al.



(2023). Despite DRLs considerable promise for portfolio optimization, it requires extensive
computational resources and may lead to substantial initial expenses. Amidst this
technological advance, the integration of advanced portfolio diversification methods with
predictive analytics, particularly through Deep Learning (DL) models, has shown notable
success. Ma et al. (2021) * validate the optimized results of advanced MV frameworks with
Random Forest (RF), demonstrating the potential to significantly improve portfolio
optimization. However, the main considerations for combining DL with portfolio
optimization are time efficiency and the penalties during the training process, as
sophisticated models utilize more resources and the machine must learn from significant
penalties to learn how to make a profit.

2.4.  Contributions of Our Work

Our research significantly advances portfolio diversification by innovatively applying HC
families, including HPCA and DTW, to stable and long-term ETFs, overcoming the limitations
of traditional MV optimization techniques. By leveraging cutting-edge advancements in
structured clustering and temporal sequence models, our analysis navigates and rectifies the
complexities inherent in conventional portfolio optimization. Our comprehensive
comparative analysis demonstrates that these novel portfolio management strategies
significantly enhance long-term performance and resilience across diverse risk-adjusted
metrics. Consequently, our work constitutes a pivotal enhancement to APD strategies within
the sphere of QWIM, setting new benchmarks for analytical depth and strategic innovation.

3. Models

In this section, we discussed the mathematical logic behind each model we chose. The main
models we selected are the HRP model proposed by Lopez de Prado (2016) and the HERC
model by Raffinot (2018), an improvement of HRP. The other models are further
advancements of these two models by modifying the correlation or distance matrices in
inputs [Avellaneda (2020); Lim and Ong (2021); Lim and Ng (2022)].

3.1. HC

This subsection explains the intuitions behind the HC models — HRP and HERC. Note that
they are similar in the overall clustering process but different in some sub processes.

3.1.1. HRP

In 2016, Lopez de Prado (2016) unveiled the HRP algorithm, a new method for optimizing
investment portfolios, for optimizing portfolios. HRP tackles previous mentioned problems

1 Ma et al. (2021) validate the optimized results of advanced MV framework with Random Forest (RF).



of MV framework proposed by Markowitz (1989) by employing a hierarchy-based strategy
and processes through three key steps:

1. HC — categorizes assets into hierarchical clusters, which happens to have the same
name as the overall clustering model.

2. Quasi-Diagonalization — rearranges the covariance matrix to group similar assets
closely.

3. Recursive Bisection — distributes weights among the portfolio’s assets.

In addition to the benefits of demonstrating reduced sensitivity to market fluctuations and
a decreased reliance on accurate predictions of asset returns, HRP optimization guarantees
that within our investment strategy, assets are vying for a share of the portfolio’s weight only
among those within their cluster, resulting in the creation of a significantly more diversified
portfolio. Another advantage of HRP is the flexibility of selection of risk measures in addition
to variances of the portfolio, which will be discussed in the final step of Recursive Bisection.

* HC

Hierarchical clustering organizes our assets into groups based on specific criteria. This
method ensures that assets within the same cluster are similar according to these criteria.
The aim is to build a hierarchical tree that shows clusters at different levels. For example, a
common way to measure similarity between data points is by using their Euclidean distance.
Data points that are closer together are considered more similar. If we set a distance
threshold, say 5, any data points within this distance are grouped together. To help visualize
this concept, a dendrogram can be used to represent the hierarchical tree as shown in Figure
1 below:

A C

N

A B C D E

Figure 1: Dendrogram (left) and Cluster Representation (right)

First, data points C and D are the closest; thus, they are grouped together (the
shorter y-distance linking C and D indicates their proximity). Next, E, being



farther from the C-D cluster but closer than A or B, is grouped with C and D.
Finally, A and B, being closer to each other, are grouped together. The y-
distances among these points reflect their degrees of similarity. Specifically, the
distance between the centroids of the A-B cluster and the C-D-E cluster is the
largest, followed by the distance between A and B, then the distance between
E and the centroid of C-D, and finally the distance between C and D.

Actually, we can observe that data points C, D, and E likely form a cluster, while
data points A and B appear to be individual points, despite their Euclidean
distances being relatively smaller than those within the C, D, E cluster
(particularly between D and E). A and B can be clustered together if the
threshold is set high enough, although the cluster density will be lower
compared to the C, D, and E clusters.

To determine the closeness or similarity between two assets (or clusters) in the financial
domain, we first need to obtain the correlations of the assets’ returns, analogous to the
Euclidean distances in the previous example. Given N assets, each with a duration of T, we
form an N xT matrix R representing these assets’ daily returns. After obtaining the
covariance matrices, Z, of our assets’ daily returns (N xT) matrix, using the formula (with
minus one in the denominator because it is a sample dataset, not the whole population)

= R
T—-1 -

we can calculate the corresponding correlation matrix based on different criteria. There are
various methods to calculate correlation coefficients p based on covariance matrices, with
the most common ones being Spearman, Pearson, Kendall, and their absolute versions.
Consequently, we can transform the correlation matrix into a distance matrix. Depending on
the correlation method used, the corresponding distance matrix translation might vary. For
the common methods—Spearman, Pearson, and Kendall—the distance matrix D is

D =P0.5(1-p), (2)

and for their absolute versions, the formula is

D =P(1-|p)). (3)

Based on the obtained distance matrix representing the distance between each asset, our
algorithm can employ various criteria. Common methods to calculate distance or similarity
include:

1. Single Linkage — the distance between two clusters is the shortest distance between
any elements in each cluster.



2. Complete Linkage —the distance between two clusters is the longest distance between
any elements in each cluster.

3. Average Linkage —the distance between two clusters is the average distance between
elements across clusters.

4. Ward Linkage — the distance between two clusters is the increase in the squared error
when two clusters are merged.

These linkage methods are documented in the Python package Riskfolio-Lib?. For additional
details on the various linkage methods available in Riskfolio-Lib, please refer to Appendix A.

¢ Quasi-Diagonalization

Following the organization of our assets into a hierarchical structure, the next phase of our
process involves applying a quasi-diagonalization technique within our algorithm. Initially,
we sorted our assets into a tree-like arrangement using a specific distance metric to evaluate
their similarities. Now, we proceed to reorder the rows and columns of the asset covariance
matrix based on the hierarchical structure obtained in Step 1 — HC. This reordering clusters
more closely related assets and separates less related ones. Upon completion, the
covariance matrix will be organized such that larger covariance values align along the
diagonal, while smaller values are distributed around it. This resultant matrix, with off-
diagonal elements closer to zero, is referred to as a quasi-diagonal covariance matrix. Figure
2 shows a template for comparing the original and quasi-diagonal covariance matrices
provided by Millea and Edalat (2022).

In our analysis, we used a 1-year rolling window, advancing 1 month at a time from 1990 to
2023. Consequently, our quasi-diagonal matrices may differ each time. However, the figure
below provides a blueprint for the structure of these quasi-diagonal matrices, with larger
covariance values nearer to the diagonal.
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Figure 2: Original correlation distance matrix (left) and after matrix seriation or
quasidiagonalization (right) by Millea and Edalat (2022)

e Recursive Bisection

This subsection presents the final phase of weight distribution to the assets, leveraging the
clustering performed in the preceding steps. The basic idea for recursive bisection is that we
recursively calculate each cluster weight each time we bisect our dendrogram until we reach
each asset (i.e., each cluster, in this case, is the assets themselves) based on our sorted
covariance matrix from Step 2 - Quasi-Diagonalization.

First, we detail and explain the entire calculation process for Recursive Bisection:
1. First, we set the weights of all assets wito 1 (dummy variables).

2. Second, beginning at the root, we apply the following weights to each cluster C;, j =
1,2, to calculate their volatilities, where Cov¢ being the covariance matrix for cluster j,
where j = 1,23:

diag(Covg)

wc ™ trace(diag(Cov )-1) (4)
o]
This takes advantage of the principle that allocations based on inverse variance are
the most effective when dealing with a diagonal covariance matrix.

3. Third, for each cluster G, j = 1,2, we calculate their newly updated corresponding
variance sigma;, where j=1,2:

.
oj = wgCovawe (5)

4. Finally, we update the weights and multiply each cluster weight a;by each asset within
it. Note that in this case, we only determine each cluster’s weight a;, j = 1,2:

O]
o =1-——-
wi= awj, With 01+02(6)az=1-a1 (7)

3 We cut the tree obtained from the first step into halves each time, and the bisection rule is based on the
number of assets. For instance, when we are at the root of the dendrogram tree, we cut the tree at its
midpoint. So that the differences of the number of elements of each cluster each bisection time is no bigger
than one, with one being the remainder effect.



We repeatedly perform Steps 2 to 4 until we reach each individual asset. It is important to
note that wgis the weight of each asset in cluster j, ignoring the covariance factor, while
sigma;j considers the covariance factor. As a result, we first calculate each asset’s weight
within each cluster, ignoring their interaction factors, and then for each cluster, we update
the cluster’s weights by considering these asset’s weights and the whole cluster’s covariance
matrix (including off-diagonal covariance values). To elucidate this subsection
comprehensively, we provide an intuitive example in Figure 3 below:

Consider the five data points in Figure 1 as five financial assets. The dendrogram
in Figure 1 is constructed based on their distance matrices, as detailed in
subsection 1, rather than Euclidean distances. The entire dendrogram tree is
recursively bisected until each asset is isolated. Each bisection results in two
clusters, with we applying certain functions (refer to equations (4), (5), (6), and
(7) for details) of each cluster’s covariance matrix to determine the weight
assigned to each cluster. This process is repeated until every asset is individually
considered. It is crucial to note that after we reach and calculate each asset, the
sum of weights equals one, and this is proven by Step 4, where alphai +alpha;
=1

In Figure 3, the bisection process is clearly illustrated. We start by bisecting the
top of the tree, creating two clusters: cluster 1 (assets A and B) and cluster 2
(assets C, D, and E). We then perform calculations, as shown in equations (4),

(5), (6), and (7), to determine each cluster’s weight. For clarity, we denote the
series of calculations on each cluster’s covariance matrix as capital F (if a cluster
contains only one asset, its covariance matrix is the asset’s variance). After
completing the first bisection, obtaining w1 and w; in Figure 3, we proceed to
the second cut, targeting assets A and B separately and repeating the process.
Next, we move to the second cluster from the initial cut, divide it into
subclusters CD and E, and repeat the procedure. Finally, we divide the previous

subcluster into sub-subclusters C and D and apply the same operations. After all
. . . - [w/ whow'! w! wm] .
bisections, we obtain a column vector w W2, Wi Was Wa | containing the

weights of all individual assets. It is crucial to initially set the weights of all assets
to 1 to enable all recursions to function.



wc = F(:Var(C)) |
wp = F(Var(D))

s
I

W'V == wws == FF((VarVar((AB)))) waw=" =wcpew"® ==FF((CovCov((CDEAB)))) ww?"
",==wPwe ==FF((CovVar((CDE))))
wW>

wr= Wi wh W Wi wil = [wa,wg,we,wp, wg]

Figure 3: Dendrogram for Recursive Bisection

Note that Riskfolio-Lib extends the risk metrics from only covariance initially to a variety of
other powerful measures, such as Value at Risk (VaR), Conditional VaR (CVaR), Calmar Ratio,
etc. In other words,Ci can be VaR, CVaR, or Calmar Ratio of each cluster. This further
strengthens the performance power of the HRP model, with higher risk-adjusted measures
in the majority of times (particularly during recent decades). However, If this is the case,
equations (4), (5), (6), and (7) require slight adjustments. These adjustments will be
discussed in the following model — HERC, which offers the flexibility to switch risk metrics
and other performance measures, a significant advantage over HRP.



e Summarization

We now summarize the core of the HRP model as follows: First, we perform HC to create an
inverted tree-like graph, or Dendrogram, to group our assets. Using this Dendrogram, we
reorder the covariance matrix to group similar assets closer together and less similar ones
further apart, resulting in a matrix with larger values along the diagonal and smaller values
towards the edges. Finally, we recursively bisect the Dendrogram and determine each
cluster’s weight using the sorted covariance until we reach each individual asset.

3.1.2. HERC

Subsequent to Lopez de Prado (2016)’s work, in 2018, Raffinot (2018) introduced a novel
algorithm in his paper, “The Hierarchical Equal Risk Contribution Portfolio.” This algorithm,
known as the HERC, combines and improves upon the machine learning techniques used in
HCAA with the top-down recursive bisection approach characteristic of HRP. The HERC
algorithm comprises four main stages:

1. HC —the same as the HRP model.
2. Determining optimal number of clusters — usually the default method is Gap statistic.

3. Hierarchical Recursive Bisection — the same as the HRP model except that for each
time it bisects the tree graph, the HERC model aligns with the clustering results
obtained in Step 1, and stops when the number of clusters k reaches the optimal
number in Step 2.

4. Naive Risk Parity (NRP) — this applies the NRP method for assets in each cluster and
multiplies NRP weights with cluster weights in which they reside.

Due to the fact that Riskfolio-Lib has already enhanced the HRP model by addressing
criticisms related to its exclusive reliance on the variance metric as the sole criterion for risk
assessment, HERC model mainly improves the HRP model in the following two ways:

1. Not Following the Dendrogram Structure — HRP deviates from the dendrogram
structure, opting instead to bisect the tree according to the number of assets (i.e., the
HRP method evenly cuts the tree each time, not considering the effect of hierarchical
clustering in the first step). Figure 4 provides an excellent example of the differing
bisections for these two models:



Figure 4: Dendrogram Bisections for HERC (blue left) and HRP (red right)

2. ldentifying the Optimal Number of Clusters — HRP approach does not need to
determine the optimal number of clusters k, but continually evenly bisects the tree
until it reaches all of the individual elements in the tree. While it is convenient to skip
the process of estimating the number of clusters, constructing such extensive trees
slows down the algorithm significantly when dealing with very large datasets. In
addition to this, allowing the tree to fully develop based on our data also creates a risk
of overfitting. This means that minor inaccuracies in the data can cause substantial
errors in estimating portfolio weights.

The HERC method fixes these problems of HRP by following the dendrogram structure and
dives into the tree until it reaches the optimal number of clusters k derived from Step 2.
Now, we only discuss the step(s) where the HERC model is significantly different from the
HRP approach:

e Determining optimal number of clusters

HERC diverges from the conventional HRP algorithm at this point. Initially, the tree is fully
developed to its maximum depth, after which it undergoes pruning to achieve the desired
number of clusters. In this situation, we will apply the default method, which is Gap statistic.
For example, imagine you have data with k clusters — C1,C5,C;,.....,Ck. The sum of pairwise
distances within a cluster, D;, can be described as follows:

Dr= dj (8)

ijeC



where djrepresents the Euclidean distance between two data points, i and j. From this, we
compute the within-cluster sum of squares centered on the cluster means, denoted as Wx

(cluster inertia).

Dr

Wk = rz=1 2 nr (9)

where n, represents the count of data points within the r cluster. The final step for Gap
statistic is to find the optimal number of clusters k such that k maximizes the following
equation:

Gap,(k) = E, [log(Wi)] —log(Wy) (10)

where E* denotes the expected value according to a certain reference distribution 4. Note
that we can select various methods to estimate the optimal number of clusters k, such as
the Average Siloutte and Elbow methods. This can be achieved by inputting the parameter k
in the Riskfolio-Lib’s HCPortfolio.optimization member function before directly applying our
wanted approaches to determine the optimal cluster number k.

¢ Hierarchical Recursive Bisection

Having found the required number of clusters, this step calculates weights for each finally
determined clusters. To illustrate this process more clearly, we refer back to Figure 3 for the
5 assets we used as a perfect example.

1. At the top of the tree, we have one big cluster and its weight is 1 (identical to Step 1
of Recursive Bisection in HRP).

2. We now descend through the dendrogram structure and successively assign weights
at each level of the tree. At each point, the tree are always bisected into two sub-
clusters, let’s say —C1 ={A,B} andC, ={C,D,E} — in Figure 3. The respective cluster
weights, CW¢, where j = 1,2, are given by the following formulae:

RCcl
Wa= (11)
RCcl +RCc2
CWe = 1-CWey (12)

4 The standard selection is a uniform distribution across the data’s range, presuming a structureless uniform

distribution. For deeper research on the appropriate reference distribution, see Tibshirani et al. (2001).



RCc1 and RCc; represent the risk contributions of clusters Ci and C; respectively. To
determine RCc1and RCc,, we must first calculate the risk contribution RC;of each asset
i within the clusters. Any traditional risk measure can be used to compute RC;, with
HERC currently supporting the following primary measures: Variance, Standard
Deviation, Expected Shortfall (CVaR), and Conditional Drawdown at Risk (CDaR)°. The
risk contribution RC for a cluster j is the sum of the risk contributions of all individual
assets within that cluster. For instance, referring to Figure 3 and assuming Ci1 = {A,B}
and G, = {GD,E}, we get:

RCc1= RC1 +RC> (13)

RCc> = RC3 +RC4 +RCs (14)

3. Recurse through the tree until all the clusters have been assigned weights.

* Naive Risk Parity (NRP)

The last step is to calculate the final asset weights. Continuing our previous example, let us
calculate the weights of assets residing in C;, i.e., assets 3, 4, and 5. Please note that the
asset weights in C; follow the same approach.

1. The first step is to calculate the naive risk parity weights, Wnrp, which uses the
inverserisk allocation to assign weights to assets in a cluster.

1

WnrPi =—__ sRci1,i € {3,4,5} (15)
2

k=3 RCx

2. Multiply the risk parity weights of assets with the weight of the cluster in which they
reside.

Whinali =WNnRrri xCWc2, i €{3,4,5} (16)

In this way, the final weights are calculated for assets in all the other clusters.

3.2. Improvements

This subsection discusses the modifications of HRP and HERC portfolio optimization
methods: HPCA in the linear case versus DTW in the nonlinear case.

3.2.1. HPCA

The HPCA conducts the traditional PCA to each cluster we found in either an HRP or HERC
situation previously. There are two main advantages of applying HPCA portfolio

5> The Riskfolio-Lib Python package includes additional options. For more details, please refer to Footnote 2.



optimization, as shown by Avellaneda (2020); Serur and Avellaneda (2020). First of all, HPCA
uses a parsimonious approach, meaning it does not rely on too many parameters. The user
only needs to define the number of clusters or eigenvectors, which simplifies the model
complexity. Second, they demonstrated that HPCA performs well across various markets (US,
Europe, China, and Emerging Markets), indicating its robustness and adaptability.
Recognizing this, it is a good idea to combine the PCA model with HC algorithms. First of all,
it is important for us to have a quick review of PCA.

¢ PCA Revisited

PCA is a method used to reduce the dimensionality of data through linear transformations,
making it valuable for exploratory data analysis, visualization, and data preprocessing. This
technique reorients the original data into a new coordinate system where the axes (principal
components) that exhibit the greatest variance are clearly distinguishable. Assuming our
portfolio has a total of N individual assets, the mathematical model for implementing PCA
for asset allocations is the Singular Value Decomposition (SVD) of the correlation matrix of
the assets’ daily returns, C:

C=UDV" (17)

where U, D, and V all being N xN matrices, D a diagonal matrix in addition to the square
matrix, columns of U eigenvectors, and diagonal entries of D eigenvalues. Note that these
matrices are in decreasing order, meaning the largest eignvalue is always the first diagonal
entry in D, and the first column of U corresponds to the largest eignvalue, the second column
of U corresponds to the second largest eignvalue, and so on. When the covariance matrix is
positive definite ©, V =U, so we obtain:

Cc=ubpu’ (18)

The eigenvectors as columns obtained in U represent uncorrelated features of the original
dataset, which could be correlation (or covariance) matrices in our case, and the eigenvalues
as diagonal entries in D are the amount of information retained by each feature.

Although we do not apply the final step of PCA in our asset allocations, this step involves
transforming the original dataset by multiplying the matrix of assets’ daily returns R by the
sub-matrix ofU containing the first k eigenvectorsU[,1:x and naming the result of this matrix
multiplication as R*:

R*k= R-U[;1:] (19)

6 There are many definitions for positive semidefinite/definite matrix, but the most common one is: x'Sx = 0
for any nonzero nx1 vector x, with = being the definition of positive semidefinite matrix.



e Correlation Update

After reviewing the concept of PCA, now it is the time to adapt to the HPCA scenario. As we
indicated before, all of the improvement of HPCA (and DTW as well) is to update the
covariance matrices, or more specifically, the correlation matrices. We first need to obtain
our first eigenportfolio F1 (i.e., the eigenportfolio 7 linked to the leading principal
component) for each cluster j after finishing the hierarchical clustering process in either HRP
or HERC case.
J
The formula for the first eigenportfolio for each cluster j, F1, is:
Nj
j 1 i

F1= q_Alj/Z=1(v1,i °Ri) (20)

J
where A; is the first (i.e., (1,1)-st, containing the most significant information of assets’
correlations) entry of the diagonal matrix D from the SVD of the correlation matrix of asset
daily returns in cluster j,C, v (for i=1,2,..,N;) is the i-th element of the first eigenvector

corresponding to A1, ° denotes the element-wise multiplication (Hadamard product), and

. . . . . . ZN’ (vj .0 R’) .
R/ is the matrix of the asset i’s daily returns in cluster j. Note that~i=1\"1i =i/ effectively
collapses the N xT matrix vi; ° R/into a T-element array by summing across the N;tickers in
cluster j for each time period t = 1,2,..,T. To better understand how equation (20) works, it

is better to provide an example:

Let us assume we have the following daily returns R(3) for the two assets over three

time periods:
23)_ (rin ri2 riz\ _ (0.0l 0.03 —-0.02
R o Iy o 13 o 0.02 0.01 0.01 (21)
(23) (23), we need
To calculate the corresponding first eigenportfolio F1 of matrix R to obtain the
correlation matrix of R(>3 using equation (1) and either Spearman, Pearson, or

Kendall method. Further, let us assume the correlation matrix of R(2,3), C(2,3) is
as follows:

7 ith eigenportfolio is the portfolio created by the combinations of assets capturing the ith significant co-
movement in their returns, adjusting the eigenvectors of the covariance matrix to different scales.



:(1 0.53)
c \053 1 (22)

(23) (23)
And we can then obtain the first eigenvalue v; and eigenvalue A1

correspondingly:
03 (071
11(2.3):1_53’ S o (23)

Then, we compute the element-wise multiplication and summation v/ ° R’:

N;
2.3 23 2.3)7 2.3 2.3)" :
Y i oY) = (R 4 (0 R b
(24)
i=1
(2.3) (2,3) (23)
where R = [0.01ﬂ0.03,—0.02]and Ry = [0.02,0.01,0.01]' andvli =

(23)
0.71 for i = 1,2. Arriving at this step, we can finally compute F1

1 2

1 r 23)7
(v R = (—) [(0.71 RV 4071 R

Leyim V1.53
(2,3) 1
o= (25)
(23)

So, the F1  that has been finally calculated is:

i | 0.71-0.01+0.71-0.02 0.0172
- | 071-003+0.71-001 | = 0.0229
V1531071 (—0.02)+0.71-0.01 —0.0057 (26)

which is a T by 1 column vector, where T in our case is 3.
J
After obtaining the principal eigenportfolio F1, we perform an ordinary linear regression of

j jeach asset i’s daily
returns in its corresponding cluster j, Ri, on F1, ignoring the intercept term:

J Jo J
Ri= BiF1+¢i, i=12,..,N (27)
J J
where 8iand g;are the coefficient and the residuals in this linear regression. Assuming two

assets i and k, and the clusters j1 and j2 each of them belongs to, the corresponding final
(i,k)-th entry of the HPCA correlation matrix R is defined by:

1. Ifj1 =42, R = Ri,

i1 12
2. Ifj1/= 2, R" = 6/*6¢*Cort Fi - F{"),



.
in which Corr(Fl'l -Fi/ )

cluster jl’ Fljl, and that of cluster j2, Fij2. In other words, we only update the correlation
entries where the two assets it corresponds to are from different clusters. When the two
assets are from the same cluster, we just left what the entry is — the entry obtained by the
previously specified correlation method transforming the covariance matrix to the
correlation matrix 8.

is the correlation coefficient between the first eigenportfolio of

Finally, it’s crucial to use a consistent method for calculating correlation coefficients. If we
initially used the Pearson method, we must use it again to update the correlation matrix
whenever two assets are in different clusters.

3.2.2. DTW

Combining DTW with HC optimization is the shining part of this research. DTW is a powerful
algorithmic tool designed to find an optimal alignment between two given temporal
sequences in a nonlinear case. In other words, DTW finds the minimum cost of alignment of
a pair of time series. It is adept at measuring the similarity between sequences that may
vary in speed or duration due to phase shifts or different operation rates. In finance, where
market data are often non-linear and out of phase, DTW becomes instrumental in aligning
time series data for better comparison and analysis.

DTW accomplishes this by ‘warping’ the time dimension of sequences to enable a point-
bypoint comparison, essentially stretching or compressing the sequences as needed to
identify patterns that would be missed by conventional linear analysis. This technique is
invaluable in comparing financial time series data such as stock prices, trading volumes, or
economic indicators that do not align perfectly over time due to various market conditions
or external events affecting the assets differently. The essence of DTW is that is a dynamic
programming approach updating the corresponding distance of two time series at each time
step by its previous value adding the minimum adjustment to the current time step.

The formula of DTW in two-time series X = (x1,X2,...,.Xn) and Y = (y1,¥2,...,ym) is summarized as
follows °:

(x,y) = min Z
(i.j)em

DTW d(x,y))? (28)

where 1t = [1o,...,7T«] is @ path satisfying the following properties:

8 The HPCA assumption is that for two assets i and k, corr(e,ex)= 0 when cluster(i)= cluster(k). While we
did not visualize the plotting of residuals in this situation, the similar (in fact, slightly better) performance of
HPCA version of HRP model compared with the traditional HRP model should convince the legitimacy of this
assumption.

9 https://tslearn.readthedocs.io/en/stable/user_guide/dtw.html



1. itis a list of index pairs k= (i, jk) with O <ik<nand 0 < jk<m
2. mo=(0,0) and rtk = (n-1,m-1)
3. forall k >0, rte= (ik, ji) is related to m-1= (ik-1, jk-1) as follows:

o j-1<ikSixk-1+1
® k1< k< ji-1+1

In this context, a path represents the synchronization of time series data in a way that the
Euclidean distance between the corresponding (that is, resampled) data points of the time
series is as small as possible. In our situation, we calculated the DTW distance matrix based
on the formula above, rescaled it from a range of 0 to 1, converted it to the correlation and
thus the covariance matrices, and performed the Hierarchical Clustering model (i.e., HRP
and HERC) based on this updated covariance matrix input. Feel free to refer to Appendix B
for the detailed algorithm implementation for calculating the DTW distance matrix.

While the above formula seems complicated to understand and calculate, it has the
following equivalent formula equivalently:

DTWIi, j] = Dist(i, j)+min(DTWIi-1, j],DTWIi, j-1],DTWIi-1, j-1]) (29)
with
DTWI[0,0] =0, DTWIOQ,i]l = DTWI[j,0] = o= for i = 1,2,..,n and j = 1,2,..,m (30)

A quick example is the continued example from equation (21). When we want to calculate
the DTW distance, DTW/[1,1] for ri1 and r21, we first calculate the distance between ri; and
raa:

Dist[1,1] = (X[0]-Y[0])? = (0.01-0.02)? = 0.0001 Then we (31)

calculate the corresponding DTW[1,1] using equations (29) and (30):
DTW([1,1] = Dist[1,1]+min(DTW[0,1], DTW[1,0],0TW[0,0]) (32)
= 0.0001+min(e=,>,0) = 0.0001 (33)

When it comes to APD, DTW is particularly useful for synchronizing disparate financial time
series data. This allows investors to recognize leading and lagging indicators across different
market segments. It also helps identify temporal relationships and correlations that are not
immediately apparent, enabling portfolio managers to anticipate and adjust to market
dynamics proactively.

Moreover, DTW can enhance risk management by detecting when assets or strategies begin
to deviate from their historical patterns, signaling potential shifts in market trends or
emerging risks. It can also contribute to better tailoring of the investment strategy to specific
market regimes by recognizing the periods where particular strategies outperform others.



By integrating DTW into APD strategies, investment models can adapt to the market’s
rhythmic fluctuations and identify opportunities that a static model might overlook. This
dynamic approach allows for a more responsive portfolio that can adjust in near-real-time
to changing market conditions, mitigating risks and capturing growth more effectively, which
is crucial for the construction of a robust and adaptable investment portfolio.

4. Implementations

4.1. Data Collections

The assets of our portfolios include a mixture of Indexes and ETFs. We carefully selected our
datasets for the following reasons:

1. Act as dependable indicators for the most significant classes of assets and their
subsets.

2. Be easily accessible for widespread use.

3. Exhibit a high degree of liquidity.

4. Provide data points on a daily basis.

5. Include a wide array of market environments, ideally dating back to the early 1990s.

6. Possess advantageous statistical qualities that facilitate easier modeling. In this regard,
financial indices are generally preferable due to their more desirable statistical
attributes when compared to the time series of individual stocks or bonds.

Based on these criteria, we finally selected 14 ideal Indexes and ETFs from Bloomberg for
the purpose of research, as shown in Table 1:

Table 1: Daily Data Sets

Name Description

BCOMTR Bloomberg Commodity Index Total Return
LBUSTRUU Bloomberg Barclays US Aggregate Bond Index
RU20INTR Russell 2000 Total Return

S5COND S&P 500 Consumer Discretionary Index
S5CONS S&P 500 Consumer Staples Index

S5ENRS S&P 500 Energy Index

S5FINL S&P 500 Financials Sector GICS Level 1 Index
S5HLTH S&P 500 Health Care Index

S5INDU S&P 500 Industrials Index

SSINFT S&P 500 Information Technology Index



S5MATR S&P 500 Materials Index

S5TELS S&P 500 Communication Services Index
S5UTIL S&P 500 Utilities Index
SPXT Proshares S&P 500 EX Technology ETF

In addition to the daily returns dataset, we also considered the importance of interest rates
in constructing our portfolio. After careful selection, we chose the monthly data on the ”1-
Year Treasury Constant Maturity Rate” because the rolling window is approximately 252
trading days (i.e., 1-year data), and we moved this window forward by 1 month. This data is
available from Federal Reserve Economic Data®®.

4.2. Backtesting

We utilized a rolling window approach with the previous year’s daily returns data to estimate
portfolio weights, advancing by one month at a time from January 1%, 1990, to December
31%, 2022. This method involved using the past year’s data to generate covariance,
correlation, and distance matrices for the modified HC portfolio diversification method. Our
portfolio, containing the research targets, was updated monthly. Besides the standard
cumulative and daily returns performance metrics, we evaluated a range of additional
criteria: Drawdowns, Maximum Drawdowns (Max DD), Annualized Returns, Annualized
Excess Returns, Annualized Volatilities, Sharpe ratios, Sortino ratios, Calmar ratios, Historical
VaR, and Historical CVaR.

For implementation, we directly used Riskfolio-Lib and tslearn for HC and DTW cases. For
the HPCA model, we manually created a class named HPCA to generate updated
correlation and covariance matrices, following the guidelines in Section 3.2.1. to obtain the
final HPCA version. We excluded transaction fees in our monthly rebalancing to avoid
introducing noise into our analysis.

5. Results

The results of the modified HC model are promising: in most cases, especially in recent
decades, our proposed portfolio outperforms the traditional MV portfolio. After
experimenting with various correlation methods, risk metrics, and linkage methods, we
found that the absolute Kendall codependence method for the traditional HC model,
Drawdowns for the risk metrics, and DBHT clustering for the linkage method ! yielded the
best results overall. Specifically, the optimal risk metrics for each model are: the Calmar Ratio
for the classical HC model (i.e., HRP and HERC) and its DTW version (for stable performance),
Average Drawdown of compounded cumulative returns for the HPCA version of the HRP
method, and Relativistic Drawdown at Risk (RLDaR) for the DTW case (for high-return

10 https://fred.stlouisfed.org/
11 The DBHT linkage method only fails with the HPCA version of the HRP case. In this situation, the complete
linkage method performs the best.



performance) 2. These superior performances are due to the HC models’ inherent
advantages of more diversified investments and versatile risk metrics.

To better interpret our results, we divide our discussion into two subsections: Portfolio
Returns and Other Performance Metrics. The first subsection includes three sub-
subsections: Cumulative Returns Analysis, Daily Returns Analysis, and Drawdown Analysis.

5.1. Portfolio Returns

5.1.1.  Cumulative Returns Analysis

Figure 5 elucidates the temporal progression of cumulative returns, delineating the ascent
of investment values from the early stages of the 1990s to the peak of 2024. The graph
serves as a synoptic display where each trajectory articulates the empirical yield of distinct
investment strategies, against the “Base Portfolio” which anchors the normative benchmark.
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Figure 5: Cumulative Returns of Stability-Focused Portfolio Strategies

In this analytical framework, “Stable Solutions” carve out a path marked by decidedly less
volatility when juxtaposed with traditional MV-optimized portfolios. This less tumultuous
trajectory embodies a calculated approach to growth, reflective of an overarching strategic
resilience to macroeconomic shifts and a keen navigation through the undercurrents of
market inefficiencies. When set against the MV baseline, this discourse amplifies the intrinsic

2 High-return performance requires more running time, occasionally fails to find an optimal solution, and
may incur warnings of inaccurate estimates



aptitude of the APD framework for long-term capital accrual, underpinning its robustness
and functional efficacy.

Moreover, the juxtaposition of different solution sets within the “Stable Solutions” suite,
such as the HRP and HERC strategies, manifests a tempered volatility when contrasted with
the DTW-enhanced equivalents. These strategies are anticipated to mirror market
vicissitudes, their adaptive responsiveness illuminated during pivotal periods such as the
turn of the millennium, the aftermath of the 2008 financial turmoil, and during the COVID-
19 pandemic. In comparison with the “Base Portfolio,” the APD strategies have exhibited
adept maneuvering through economic tumult, marked by pronounced devaluations swiftly
followed by rebounds, indicative of efficacious capital preservation and risk management
protocols.

The HERC portfolio strategy, particularly post-2024, emerges as a paragon of resilience and
strategic acuity, encapsulating the tenets of APD’s investment philosophy. This portfolio, in
tandem with its DTW-enhanced counterpart, has shown commendable economic recovery
post-crisis. It maintained stability amidst the pandemic-induced financial oscillations,
underscoring the portfolio’s capacity for withstanding excessive market volatility.

Figure 6's depiction of the ”High-Return Solutions” suggests a trajectory of marked
ascensions, embodying the venturesome spirit intrinsic to such strategies. The aggressive
inclines, especially noted in the HERC Portfolio, signal a more ambitious capital growth
approach, potentially indicative of dynamic asset allocation strategies, which might include
leveraging, derivatives trading, or high-frequency trading—practices generally associated
with higher risk and reward prospects.
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Figure 6: Cumulative Returns of High-Reward Investment Strategies

Across both ”Stable” and ”High-Return” solution spectrums, the APD strategies advocate for
a balanced amalgamation of mitigated risk growth and potent capital enhancement. The
strategic deployment of APD principles promises a controlled and progressive investment
experience, offering solace to conservative but growth-aspiring investors.

5.1.2.  Daily Returns Analysis

In our preceding analysis, we evaluated the cumulative returns over a given period and
concluded that APD strategies exhibit stability in long-term growth, demonstrating resilience
during catastrophic financial events such as economic crises with less impact and quicker
recovery capabilities. Building upon this foundation, Figure 7 offers an interpretive view of
the granular fluctuations in returns within the ”Stable Solutions,” dissecting the inherent
volatility and risk dynamics characteristic of each investment strategy under the umbrella of
stable approaches.

The data depicted across the entire temporal scope indicates that APD portfolios, which
include the "HRP-DTW Portfolio,” "HERC-DTW Portfolio,” and “"HRP-HPCA Portfolio,” have
maintained a strict dispersion range of returns. This denotes the application of finelytuned
mitigation strategies against the market’s frequently unpredictable fluctuations, leveraging
hierarchical clustering, principal component analysis, and temporal alighment algorithms to
ensure a disciplined dispersion range, thereby dampening stochastic market noise. In
particular, the temporal alignment strategy facilitated by the DTW method has further
insulated these portfolios from sporadic and anomalous market movements that typically
induce greater volatility in daily returns. In contrast, the baseline ”“Base Portfolio” (i.e., the
MV method of weights’ determination) exhibits a broader volatility of returns with more
pronounced peaks and troughs, indicating a greater sensitivity to transient market
anomalies.



Portfolio Daily Returns for Different Strategies
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Figure 7: Portfolio Daily Return of Stable-Return Investment Strategies

Figure 8’s "High-Return Solutions” display a wider range of daily returns, in line with their
risk-receptive stance aimed at achieving greater financial gains. APD strategies consistently
provide a stable and stringent range of return dispersion. Such precision in risk control,
especially within the ”Stable Solutions,” contrasts starkly with the broader variances seen in
"High-Return Solutions,” indicating a greater tolerance for market upheaval in pursuit of
superior financial outcomes.

Together, these analyses offer a nuanced understanding of the risk-return profiles inherent
to each investment strategy. They demonstrate that APD strategies furnish a more
meticulous market navigation, delivering a level of controlled performance not consistently
achievable by traditional MV optimization. The APD framework, with its strategic emphasis
on risk reduction and capital enhancement, assures a more predictable and less volatile
journey towards wealth accumulation, appealing to investors across the spectrum of risk
appetites.
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Figure 8: Portfolio Daily Return of High-Return Investment Strategies

5.1.3. Drawdown Analysis

Figure 9 provides a visual representation of portfolio performance under stress, showing the
extent of losses each strategy sustained from peak to trough. The chart specifically illustrates
the ”stable solution” and its ability to reduce losses during market downturns,
demonstrating the effectiveness of the APD strategy.

The volatility curve reveals the maximum depth of decline experienced by each strategy,
indicating the retracement from the peak. The ”Stable Solution” includes strategies such as
the "HRP Portfolio” and the "HERC Portfolio”, which have significantly smaller drawdowns
than their ”Basic Portfolio” and DTW-enhanced counterparts. This demonstrates the APD
strategy’s robustness in terms of capital preservation and its ability to maintain portfolio
valuations during volatile market conditions.

The “HRP-DTW” and “HERC-DTW” strategies show a slight increase in drawdowns,
suggesting that while DTW integration helps with timing and potentially identifying market
changes, it may not always imply sensitivity to extreme market moves decline. However, the
"HRP-HPCA portfolio” integrating hierarchical principal component analysis often exhibits
superior resilience, highlighting the utility of this approach in distilling and responding to
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Figure 9: Portfolio Drawdowns of Stable-Return Investment Strategies
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Figure 10: Portfolio Drawdowns of High-Return Investment Strategies core

market drivers while mitigating the impact of peripheral fluctuations.




In Figure 10, the retracement value fluctuation under high returns is similar to that under
steady state, except that due to the influence of DTW, the retracement elasticity of HRP
increases.

By comparing the drawdowns of these strategies to a traditional “underlying portfolio,”
APD’s ability to respond to and recover from financial turbulence is significantly enhanced.
This attribute is invaluable to investors with risk-averse tendencies and gives us confidence
that the strategic deployment of APD principles can lead to a more controlled, less chaotic
investing experience.

5.2. Other Performance Metrics

In the comparative assessment of portfolio strategies under the ambit of APD and traditional
MV optimization, the key performance metrics reveal a distinct demarcation in risk
propensity and endurance. As Table 2, the APD strategies, embodied by the likes of "HRP-
DTW,” "HRP-HPCA,” and "HERC,” demonstrate a notable reduction in Max DD when
juxtaposed against the baseline MV strategy, the "Base Portfolio.” This reduced Max DD
underscores the APD strategies’ enhanced resilience to market downturns, thereby
endorsing their efficacy in mitigating the severity of potential losses.

Table 2: Stable-Return Solutions Metrics
MV  HRP-DTW - HERC-DTW HRP-HPCA HRP  HERC

Max DD -0.45 -0.25 -0.39 -0.22 -0.25 -0.39
RET 0.01 0.02 0.02 0.02 0.02 0.03
SD 0.12 0.09 0.13 0.09 0.09 0.14
Sharpe 0.05 0.25 0.15 0.23 0.24 0.20
Sortino 0.08 0.40 0.23 0.36 0.37 0.32
Calmar 0.13 0.29 0.18 0.32 0.29 0.21
VaR (5%) -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
VaR (1%) -0.02 -0.02 -0.02 -0.02 -0.02 -0.03
CVaR (5%) -0.02 -0.01 -0.02 -0.01 -0.01 -0.02
CVaR (1%) -0.03 -0.02 -0.04 -0.02 -0.02 -0.04

The Sharpe and Sortino ratios, quintessential gauges of risk-adjusted performance, show a
marked improvement for APD strategies, thereby substantiating their superiority in
delivering higher returns per unit of total and negative risk, respectively. Such improvement
in risk-adjusted returns is a testament to the APD’s sophisticated risk management and
optimization processes that refine the investment landscape by taming volatility and
tempering drawdowns.



The Calmar ratio, which marries the annualized rate of return to the maximum drawdown,
illuminates the prudence of the APD strategies. Elevated Calmar ratios in the context of
”Stable Solutions” such as "HRP” and "HRP-HPCA” portfolios highlight their proficiency in
securing commendable returns despite facing adverse market movements.

VaR and CVaR further punctuate the risk narrative, quantifying the prospective loss within a
defined confidence level. APD strategies exhibit lower VaR and CVaR figures, indicative of a
systematic approach to risk containment, where the potential for tail-end losses is prudently
restrained.

For the "High-Return Solutions” within the realm of APD, the performance metrics delineate
a compelling case for their risk-reward profile when contrasted against the MV optimization.
The metrics, as Table 3 shows, unfold a narrative of deliberate risk engagement to harness
superior gains. Max DD for these high-return portfolios indicates a strategic acceptance of

Table 3: High-Return Solutions Metrics
MV  HRP-DTW  HERC-DTW HRP-HPCA HRP  HERC

Max DD -0.45 -0.23 -0.39 -0.22 -0.25 -0.39
RET 0.01 0.03 0.02 0.02 0.02 0.03
SD 0.12 0.10 0.13 0.09 0.09 0.14
Sharpe 0.05 0.31 0.16 0.23 0.24 0.20
Sortino 0.08 0.49 0.24 0.36 0.37 0.32
Calmar 0.13 0.35 0.18 0.32 0.29 0.21
VaR (5%) -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
VaR (1%) -0.02 -0.02 -0.02 -0.02 -0.02 -0.03
CVaR (5%) -0.02 -0.02 -0.02 -0.01 -0.01 -0.02
CVaR (1%) -0.03 -0.03 -0.04 -0.02 -0.02 -0.04

deeper troughs in exchange for higher returns, as evidenced by the escalated return (RET)
figures. The HRP-DTW strategy, for instance, with a Max DD of -0.233964, demonstrates a
significant reduction in adverse excursions compared to the baseline MV, highlighting the
nuanced risk management of APD strategies while seeking amplified returns.

The Sharpe and Sortino ratios for these high-return strategies, such as HRP-DTW with a
Sharpe ratio of 0.312291 and a Sortino ratio of 0.388919, suggest that the additional risk
incurred is being adequately rewarded by the excess returns over the risk-free rate. These
enhanced ratios signify that the strategies not only navigate the markets more proficiently
but also utilize risk in a manner that proportionately increases the potential for returns.



The Calmar ratios of these portfolios, particularly for HRP-DTW at 0.346863, reaffirm the
APD strategies’ strength in sustaining growth over long periods despite market setbacks,
providing a clear illustration of sustained performance against the backdrop of the deepest
drawdowns experienced.

Furthermore, the VaR and CVaR metrics reinforce the risk posture of these strategies. Lower
VaR and CVaR values for HRP-DTW, at -0.009365 and -0.015305 respectively, compared to
the baseline MV, exhibit a strategic risk containment where the likelihood and mean of
potential losses are kept within manageable bounds despite the aggressive pursuit of higher
returns.

The high-return APD strategies exemplify a bolder, yet calculated approach to portfolio
management, where heightened returns are pursued without overlooking the implications
of risk. These strategies advocate for an investment ethos where the acceptance of larger
fluctuations is integral to achieving outsized financial outcomes, aligning with the aspirations
of investors who possess a more robust appetite for risk in their pursuit of wealth
maximization.

In the interplay of APD and MV optimizations, it becomes apparent that the former offers a
more robust platform for investors, characterized by lower volatility and drawdowns without
significantly compromising on return potential. These metrics coalesce to portray a holistic
view of the investment strategies, where APD not only transcends the traditional
frameworks in terms of return metrics but also provides a more nuanced approach to risk
management, affirming its suitability for investors with varying risk appetites and investment
horizons.

6. Conclusions

This study’s comprehensive analysis of APD strategies represents a significant advancement
in portfolio optimization. By integrating HPCA and DTW with HC portfolio diversification, our
models surpass the traditional MV optimization approach. Empirical investigation and
guantitative metrics reveal that APD strategies significantly enhance portfolio robustness,
reduce volatility, and mitigate risk while delivering competitive returns. This high
performance is attributed to two main factors: (1) more diverse weight allocation and (2)
multiple risk minimization methods beyond just volatility.

For further implication, the findings of this paper advocate for the adoption of APD strategies
by investors who prioritize both capital appreciation and prudent risk management. APD
strategies are adaptable to various investor profiles, from risk-averse individuals to those
seeking aggressive growth. The integration of advanced statistical models within APD
establishes it as a formidable approach in modern finance, offering a structured yet flexible
framework for portfolio construction that aligns with today’s complex market dynamics.



In conclusion, as the financial industry evolves, APD principles provide a solid foundation for
navigating the multifaceted investment environment. Investors and portfolio managers are
encouraged to consider APD as a means to achieve a more nuanced, informed, and dynamic
portfolio management process, capable of responding to the unpredictable nature of global
financial markets and the ever-changing investment horizon.

7.  Future Improvements

As we look ahead, the continuous refinement of APD strategies remains pivotal in adapting
to the evolving dynamics of financial markets. The promising results obtained thus far serve
as a foundation upon which future research and practical enhancements can be constructed.
To sustain the momentum of progress and address the challenges uncovered during the
analysis, the following suggestions for future research and practical implications are
proposed:

1. Data Enrichment —Incorporating a broader spectrum of data, including alternative and
unstructured data sources (such as macroeconomic indicators, sentiment analysis,
and ESG factors), could provide deeper insights into asset behavior and market
dynamics.

2. Algorithmic Advancements — Exploring cutting-edge machine learning algorithms and
artificial intelligence techniques could improve the predictive accuracy of the models.
This could involve the use of reinforcement learning for dynamic strategy adjustments
and neural networks for pattern recognition within financial time series.

3. Model Hybridization — Combining the strengths of different models may yield a more
robust framework. For instance, integrating DTW with machine learning classifiers can
enhance the detection of regime shifts and asset class behaviors, leading to more
responsive portfolio adjustments.

4. Portfolio Customization — Tailoring APD strategies to different market conditions and
investor preferences can enhance their applicability. Customizing strategies for various
market environments and risk appetites can make them more versatile and effective.

5. Performance Benchmarking — Establishing comprehensive benchmarks to evaluate
APD strategies against other advanced portfolio optimization techniques can provide
clearer insights into their relative performance and areas for improvement.

The roadmap for future improvements must be navigated with a commitment to rigorous
research, innovative thinking, and adherence to sound investment principles. As the
financial landscape becomes increasingly complex, the APD framework’s ability to evolve
and incorporate new methodologies will be critical to maintaining its relevance and efficacy
in portfolio management. Despite these suggestions, our research significantly contributes
to the evolving academic field. Specifically, our research has shown the profitability of
combining DTW with the HC model to outperform the traditional HC method under various



portfolio performance metrics. In terms of practical application, our strategies better mimic
the real world by incorporating fluctuating interest rates into our asset allocations.
Furthermore, our approaches and results are legitimate due to the proofs of these models
separately by previous researchers and the beneficial properties? of the research targets we
selected for testing our strategies’ performance.

Appendix A

¢ Single Linkage (SL)

Single Linkage (SL) is a method of Hierarchical Clustering. Starting with a matrix that
measures the distances, this approach initially gives each object its distinct cluster. In
subsequent steps, it consistently combines the two closest clusters. This process continues
until all objects are grouped into a single cluster. Throughout this process, the measure used
to determine the distance between two clusters das is updated to reflect the smallest
distance between any two elements in each cluster.

dag= min D(ab) (34)
a€A,bEB

e Complete Linkage (CL)

Complete Linkage (CL) is a variant of SL, with the distance between two clusters dazis the
largest distance between any two elements in each cluster:

das=max  D(a,b) (35)
a€A,bEB

e Median Linkage (ML)

Median Linkage (ML) is another variant of SL, with the distance between two clusters dasis
the median distance between any two elements in each cluster:

das=median D(a,b) (36)
a€A,bEB

e Average Linkage (AL)

13 The assets in our portfolio have a long life, are highly convertible, and serve as reliable measures or
benchmarks for the main categories of investments (such as stocks, bonds, commaodities, etc.) and their more
specific divisions.



Average Linkage (AL) extends SL, with the distance between two clusters dagis the mean
distance between any two elements in each cluster:

das=mean D(a,b) (37)
a€A,bEB
AL has another name: UPGMA (Unweighted Pair Group Method with Arithmetic Mean). The
UPGMA algorithm generates a rooted tree, also known as a dendrogram, which visualizes
the relationships delineated in a pairwise similarity matrix or a dissimilarity matrix. With
each iteration, it merges the two closest clusters into a larger cluster.

Thus, the distance between any two clusters A and B, daus).x, which have cardinalities (i.e.,
number of elements in each cluster) |A| and |B| respectively, is computed as the mean of all
distances d(x,y) between the object pairs x in A and y in B, thereby establishing the average
distance between the members of each cluster. Put another way, during each step of
clustering, the new distance that is determined between the merged clusters AUB and
another cluster X is calculated using a weighted average of the distances daxand dgx:

|A|-dax+|B|-dsx

d(AUB),x :Lzzd(x ,y): (38)
RN ) A Bxeave |A|+| B

¢ Weighted Linkage (WL)

Weighted Linkage (WL) is a variation of AL, with the distance between two clusters is the
weighted average distance (i.e., Weighted Pair Group Method with Arithmetic Mean,
WPGMA) between any two elements in each cluster.

The WPGMA algorithm is a method for constructing a phylogenetic tree, known as a
dendrogram, which represents the relationships indicated by a pairwise distance matrix or
a similarity matrix. During the process, the algorithm pairs the two closest clusters, denoted
by A and B, into a single, larger cluster represented by AUB. The distance of this new cluster
to another cluster, denoted by d(aus)x, is calculated as the arithmetic mean of the average
distances from X to both A and X to B:

dax+dsx

d(AUB),X= 2 (39)
¢ Centroid Linkage (CL)

Centroid Linkage (CL) includes calculating the average position of each cluster (i.e., centroid),
das, and then measuring the distance between these central points:

das=d(A,B) (40)



e Ward Linkage (Ward’s Method)

Ward Linkage (Ward’s Method) is an alternative to SL. It calculates the increase in the total
sum of squared errors. Essentially, the minimum variance criterion of Ward’s aims to keep
the variance within each cluster as low as possible. In other words, we want to find two
clusters A and B such that when they are combined, the increase in the total sum of squared
within-cluster distances is least. And the distance between two clusters dasis the increase
in overall sum of squared within-cluster distances:

da,g = A(SSwithin) = SSwithin(T)—(SSwithin(A)+SSwithin(B)) (41)

where:

® A(SSwithin) is the increase in the sum of squares within clusters due to merging.

® SSwithin(A) and SSwithin(B) are the sum of squares within the individual clusters A and
B, respectively.

® SSwithin(T) is the sum of squares within the new cluster T, formed by merging A and B.

¢ Direct Bubble Hierarchical Tree Linkage (DBHT Clustering)

The DBHT (Dynamic Branching Hierarchical Tree) clustering method is a graph-theoretic
approach to extracting clusters and hierarchies from complex datasets. It does so
deterministically and without prior information, which distinguishes it from many clustering
methods that may require prior information or supervision. The exact steps to perform DBHT
Clustering are complex, but the general idea of DBHT Clustering is to form a bubble tree and
select the CL method based on this bubble tree to form clusters. You can see a more detailed
explanation by Song et al. (2012).

The traditional linkage algorithms (i.e., ranging from SL to Ward’s method) begin by
organizing distances between elements (such as stocks) from smallest to largest. They then
create a dendrogram, which groups subsets based on these minimal distances, and
determine the clusters by selecting a specific number of them. In contrast, the DBHT method
inverts this sequence: it first identifies clusters through topological analysis of a planar graph
14 then establishes a hierarchy within and among these clusters. Thus, DBHT differs in the
type of information it uses and its overall procedural strategy.

14 planar Maximally Filtered Graph (PMFG); the PMFG is defined as a type of graph that consists of a set of

vertices V, edges E, weights W assigned to E, and a set of distances D associated with E.



Appendix B

For two time series X and Y, n = len(X) and m = len(Y). The DTW algorithm has a time
complexity of O(nm), capable of determining the precise optimal solution for this issue. The
pseudo-code in Python is as follows *°:

1

10

11

12

13
14

L5

def dtw(x, y):

# Initializations fori=1..n
forj=1..m
Cli, j] = inf

C[o, 0] = 0.

# Main loop
fori=1..n
forj=1..m

dist = d(x_i, y_j)**2
Cl[i, j] = dist + min(C[i-1, j], C[i, j-1], C[i-1, j-1])

return sqrt(C[n, m])

Here, d(x;y;) = |xi—yj|, and in our case, n =m. DTW is a Dynamic Programming (DP) technique
where each entry at row j and column j is updated based on the distance between asset x at
time j and asset y at time j and the minimum of both these assets’ previous time steps.
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