P-ISSN: 2204-1990; E-ISSN: 1323-6903 DOI: 10.47750/cibg.2021.27.03.144

Suzuki Swift Marketing Data Comparative Study of Different Forecasting Methods

DR. PRIYANKA RAWAL¹

¹Department of Management, Jagran Lakecity University, Bhopal Email ID: jagraneip@gmail.com

> Abstract: Sincere approaches to practical forecasts in organisations have been accomplished through operative research (OR) since its inception. Scientists have affected forecasts in other disciplines. Forecasting has an enormous social, economic and environmental impact and has a very important aspect of every business. Several prediction models have been developed to help people decide correctly against future uncertainties. However, there are distinct advantages and limitations for every prediction model. It is important to succeed in selecting correct forecasting methods from other alternatives. This paper aims to analyse predictive techniques to forecast car sales results, Ford Mustang. Companies depend on precise projected data to make the right decisions and to predict the business results over a long and short time. Predictions are usually based on historical results, industry comparisons and developments in the sector. Different model time series foresees were used in this phase, for example the moving average, exponential smoothing, the Holt double exponential smoothing, winter's three times exponential smoothing and ARIMA. The predictions were made on the basis of the annual (non-seasonal) data and the cumulative annual data (seasonal) in the ARIMA model. For both the threefold exponential smoothing system of winter and the ARIMA model, Minitab was used to produce forecast. In addition, the best prediction method for this given set of data was found to be the double-exponential smoothing process used by Holt when calculating the mean absolute deviation.

Keywords: ARIMA, forecasting, moving average, Management, supply chain Management.

INTRODUCTION

In challenging environments, modern companies have to deal with various issues. The effective organizations are more flexible and follow up on new or revamped business management principles easily. Such methods are slowly being extended to functions. Provisioning chain management (SCM) was one of Bangladesh 's latest ideas from the late 1991s in the corporate sector. At first Supply Chain Management was integrated into the multinationals (MNC), and later other private and regional conglomerates followed the principles. Since the beginning of the purchasing and management of materials, SCM has played the major role but SCM has taken the integrated form, i.e. the procurement, management of materials, support for production and management of distribution services. Taking into account the competitive market scenario, SCM is the main area for companies to work[1].

The SCM deals with consumers as finished goods of primary, indirect and origin services (as input materials). The Supply Chain is a network between vendors, producers, retailers, distributors, transport operators and other supply chain partners. Since the beginning of the purchasing and management of materials, SCM has played the major role but SCM has taken the integrated form, i.e. the procurement, management of materials, support for production and management of distribution services[2]. Taking into account the competitive market scenario, SCM is the main area for companies to work. The SCM deals with consumers as finished goods of primary, indirect and origin services (as input materials). The Supply Chain is a network between vendors, producers, retailers, distributors, transport operators and other supply chain partners.

For most early SCM activities are expected to initiate all other SCM actions. Forecasting, however, plays a significant role both internally and externally. Forecasting is the primary component of both SCM and strategic strategy and decision-making. Companies are highly dependent on the real numerical value of forecasts, in real professional practice, to take significant decisions such as building capacity, allocating money, extending and further or backstream integrations etc[1].

Provision is an integral part of any enterprise. The practice is to forecast future trends on the basis of past knowledge. In our daily lives, many things are forecast. Data prediction helps an economy to see and prepare for the future. It also helps to develop prediction techniques which best fit current data. Projections of revenue, developments, demand patterns, economic revolutions, downturns and so on enable every company to prepare

its company. Companies are dependent on reliable forecasts to schedule programs, manufacturing, produce, revenue, profit margins, back-up plans, shop, funds, results, places, and mitigate vulnerability[3].

The methods of forecasting are primarily qualitative and quantitative. Historical data are not available, or qualitative approaches are used when there are inadequate data available. These predictions are based on assumptions, opinions, intuitions, expectations and are therefore subjective[4]. For example, a survey of the appropriate group of participants for the use of the product may be necessary to test the demand for a new product on the market. Some qualitative approaches may be used in the prediction process, such as: a) an opinion from an expert; b) a basic analysis, c) estimated estimation, d) Delphi.

At the other hand, quantitative approaches are based on existing statistical models and are empirical in nature. They forecast data based on historical or past evidence. In order to create a forecasted database, for example, rising consumption patterns can be easily explored. For these predictions there are no assumptions or opinions required[5]. This approach is used whenever a current trend is expected to occur again in future. In quantitative forecasting, the only challenge is to evaluate which forecast model better matches current data and which model is most reliable. A) Univarious or Times-Series forecasting and b) Multivariate forecasting are the specific forms of quantitative prediction process.

Time series forecasts are carried out if a pattern or trend is necessary in a number of previous data values. If the trend is observed, this type of projection predicts future values based on trend extrapolation[6]. This technique can only be used if a normal pattern is present in the data set and no significant fluctuations occur. This method is also useful for a single data set. The time series forecast is also known as: a) Moving average; b) Exponential trend and seasonal smoothing; c) ARMA / ARIMA models

For the purpose of predicting values for one single variable, a multivariate prediction method is useful. The explanation is that the different variables are related in these scenarios. Such correlations are the basis for the forecasts. It forms of prediction technology helps determine the effect of changes in certain variables. However, the detection, selection and estimation of these associated variables may be challenging[7].

Forecasts may be made on the basis either of qualitative empirical analysis or quantitative mathematical analysis. The prediction models can therefore be widely based on qualitative methods and quantitative methods. Fig.1 shows the flow diagram of a standard predictive modelling method[6]. Lusk and Files argued that the 'true' tool of numerous prediction competitions may not be a forecaster. There are obvious advantages and drawbacks of all prediction approaches. Therefore, it is important for all decision makers to choose an appropriate forecasting process. This paper discusses the most important predictive models briefly.

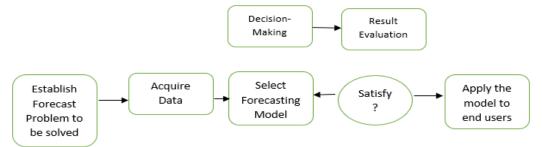


Fig.1: Illustration of a Typical Forecasting Modelling Method

RESEARCH QUESTIONS

Question1: What are the different methods of forecasting? Question2: What are quantitative Forecasting technique?

LITERATURE REVIEW

Across many sectors, including food, energy and automobiles, numerous attempts have been made to forecast patterns. The aim of this paper section is to provide a brief overview of past research, adapting, updating, simulating and implementing various forecasting models. Moveable average models have historically been given more focus relative to the other models of forecasting sales data listed previously (Kahn, 2002).Since plain, shifting, average models are not very accurate, efforts have been made to develop complex models for improved prediction accuracy, such as cumulative, weighted shifting and exponential moving averages. For instance, Holt (2004) established an average moving model exponentially weighted and examined no pattern and pattern. Researchers have used other methods including basic exponential smoothing, exponential trend smoothing, winter model and ARIMA[5].

The forecast can be used as part of the planning method in both individual and business sectors. The primary area of application of the forecast is SCM, inventory management, government budgeting, and personal investment. Currently, forecasting in other untapped areas has become the growing concern. Forecasting activities are identified as inputs in the humanitarian and supply chain humanitarian disaster relief model and

forecasting is identified as supply chain management, which is known as a capability-building capacity creation in affected communities[8].

For the provision of sales data for some 45 retail shops, Walmart, Djukanovic, Milic, & Vuckovic (2014) compared the performance of exponential smoothing with seasonality, shifting average with seasonality, linear regression and others. The effectiveness of ARIMA models and state space models has been compared between Ramos, Santos and Rebelo (2015). The retail sales in five different categories of footwear are taken into account, for example boots, booti, apartments, sandals and schedules. Models have been tested based on the RMSE, the MAE, and the MAPE (Mean Absolute Percent Error). Methods were evaluated based on RMSE[9]. The tests have shown that both models have also changed. Researchers have also created new hybrid models, incorporating two or more different methods or a whole new model that fits a specific application.

Cachon and Fisher (2000) noted that supply chain partners should create joint strategies and forecasts to coordinate their production and shipping schedules in order to minimize costs, lead times as well as safety equipment and inventories, through inventory turnarounds, sales and profit margins and enhance operational efficiency through alignment of their process and promotion of knowledge sharing. Integration is characterized as the combining of parts into a whole and supply chain integration refers to the adoption and implementation of cooperation and collaboration systems, procedures, technologies and practices by supply chain partners for the development and maintenance of a seamless conduit to ensure that knowledge, materials and finished products can flow precisely and promptly[10].

Choi, Hui, Liu, Ng, & Yu (2014) created a new hybrid model to forecast fashion sales data in real time using a minimum amount of time and previously available data. Literature therefore suggests multiple models to research the prediction patterns of different developments in a wide range of industries, such as textiles, cars and utilities. Although not one of the best models suits all the various scenarios and industries, a specific approach can be chosen provided some simple parameters like business size, seasonal variations and data available.

Competition is commonly argued, not between firms today, but between supply chains. Active supply chain management (SCM) has become a potential useful way to maintain competitive competitiveness and boost organizational performance. Companies are starting to understand that enhancing efficiencies within an enterprise is not enough. Moberg et al (2002) have pointed out that understanding and practicing supply chain management (SCM) have become a fundamental condition for remaining competitive and profitable global race. Jones (1998) claimed that a number of organizations have started realizing that SCM is necessary for the creation in an increasingly crowded place of a sustainable competitive edge of its goods and services.

The literature offers no evidence of effective implementation despite increased attention paid to SCM and the SCM anticipations. Boddy et al. (1998) found that more than half of the survey respondents considered that their organisations' supply chain partnerships have not been successful. Speakman et al. (1998) noted that 60% of the alliances between the supply chain have failed. Many investigators have stressed the importance of sharing information in SCM practices. Lalonde (1998) sees knowledge sharing as one of five components of a good supply chain connection. The supply chain partners who exchange information regularly can work as a single entity, according to Stein and Sweat (1998). Together, they can better understand the end customer's needs and can therefore react more quickly to market changes[11]S.

In automatic forecasting systems, exponential smoothing is widely used. But when only limited historic details can be used in future demands, unintended outcomes can be obtained by the ad hoc startup approaches used in exponential smoothing. An exponentially smooth average weighs the data implicitly, like discounting, by large data sets. This pattern is important as it minimizes a prediction error as demonstrated by John McClain (1981). This is significant. Adjustment had little impact when statistical forecasts were almost perfect. When the predictions are less accurate, the adaptive accuracy increases. These findings indicate the graphical evaluation interest, as stated by Thomas R. Wille main (1989), and an adaptation of statistical forecasts.

Time series software forecasting tools typically include a number of techniques, some of which give users the ability to define parameters automatically. However, it is necessary to provide the decision-maker with specialized systems in real business circumstances where it could be necessary to forecast thousands of time series that are either automatic prediction parameters of certain prediction models or a prediction model selection from a set of models. Time series software forecasting tools typically include a number of techniques, some of which give users the ability to define parameters automatically. However, it is necessary to provide the decision-maker with specialized systems in real business circumstances where it could be necessary to provide the decision-maker with specialized systems in real business circumstances where it could be necessary to forecast thousands of time series that are either automatic prediction parameters of certain prediction models or a prediction models or a prediction models.

Improved accuracy does not automatically contribute to more reliable predictions. Predictions are of little value; no matter how precise, if not used. Most planners are not sure about forecasting. For predictions to be used, forecasters must decide the kind of predictions required[12]. Documents on forecasts should be clear and easy to understand. For ideas for addressing future issues before the final presentation, a draft report will be circulated. Following the distribution of the forecast numbers, forecasters should monitor how forecasts are used. Such

community efforts in the production of projections usually boost both accuracy and acceptability, so Chaman L. Jain clarified the importance of the projections.

METHODOLOGY

For the forecasting of data for 2017, the predictions were based on time series techniques, namely 3 and 5 period average moving methodologies, simple, double and triple exponential smoothing techniques and ARIMA models. For average, basic and dual exponential flushing strategies, it was used in Microsoft Excel to calculate forecast values. For these forecast models all data were used up to 2010 until 2016. Minitab was used in Holt and Winter models to estimate values. Only data from the past three years, 2014 to 3 years, were used to estimate the Holt Model for the seasonal factor and the non-seasonal ARIMA Model; however, all data from 2010–16 used the ARIMA seasonal model to predict values.

Design:

In the estimation of car (Ford Mustang) sales data for 2017, this study aims to use various prediction techniques in time series. A) moving 3 and 5-period average, b) quick, exponential smoothing, d) exponential smoothing with inclination, d) pattern and seasonality triple exponential smoothing in Winter and e) non-seasonal and seasonal factors like ARIMA via Microsoft Excel and Minitab, respectively. The techniques used are a) moveable process. A contrast was made of the forecasting techniques and an interpretation of the best fit for the data set was considered to be an absolute mean deviation (MAD).

Sample:

A) $\alpha = 0.1$, b) F (2) = A (1) for simple exponential smoothing. A) $\alpha = 0.1$ b) $\beta = 0.2$, F (1) = A (1) For Double Exponential Smoothing: A) $\alpha = 0.1$, b) $\beta = 0.2$, c) $\alpha = 0.3$. In the case of three different exponential smoothing. Current car sales in July – December 2017 are expected to be the same in all linear smoothing as existing car sales in July – December 2016. Three sets of data were anticipated using all data for the ARIMA model taking into account seasonality between 2010 and 2016. ARIMA (1,1,0,0), ARIMA (1,1,1,0) (1,1,1,1,0) and ARIMA (1,1,1,1) (1,1,1) were the scenarios of three scenarios.

Instrument:

It is one of the simplest techniques to predict the future value using the average of previous periods. The arithmetic mean for the last 'p' observations is a p-period, moving average form. The prediction for the p+1 duration will be: this model is very useful for data that is almost constant over time and for data that has a more or less linear pattern, which does not swing.

$$F_{t} = \frac{1}{p} \sum_{i=t-p+1}^{t} A(i)$$
$$f_{(t+\tau)} = F_{t}, \qquad \tau = 1, 2, ...$$

If no time series pattern exists and the same weights have to be assigned to the last p observations. During the computation of forecasts using that method, the task is to choose the correct length of time. More random trend elements are smoothed the longer the average time period is moving. Furthermore, if a data set has a trend pattern, a moving average estimate leads to a lag. A number of limitations can occur in this model such as (a) All observations have equal weight although the latest data are most relevant to existing situations, (b) no data beyond the specified average and (c) forecast data can be misleading should the data have a seasonal tendency.

Another popular forecast is the simple exponential smoothing method by combining the actual value of the latter period with the expected value of the latter period to create the predicted forecast for the desired duration. The smoothing element is Alpha, which has a value from 0 to 1.

$$\mathbf{F}_t = \alpha \mathbf{A}_{t-1} + (1-\alpha)\mathbf{F}_{t-1}$$

Even the latest findings are taken into account in this process, unlike the modified average. Therefore, for some types of data where the recent observations are very significant, this approach appears to be more precise. The most recent data are more likely to suggest potential patterns / trends in the majority of scenarios. This method of forecasting best suits these results. This is called exponential smoothing, as the word $(1-\alpha)$ declined through observation of the past.

This approach has already been developed using the basic exponential smoothing procedure, also known as the trend-oriented exponential smoothing technique, to display a linear trend or pattern in data series. In this procedure, 2 values are combined to achieve the expected value, the smooth estimate and the trend. The equations that make up the model are below.

$$F_{t} = \alpha A_{t} + (1 - \alpha)(F_{t-1} + T_{t-1})$$
$$T_{t} = \beta (F_{t} - F_{t-1}) + (1 - \beta)T_{t-1}$$

 $f_{\iota+\tau} = F_{\iota} + \tau T_{\iota}$

The alpha and beta constants apply respectively to the smoothing constant and the trend element. The smoothing constant alpha was used by simple exponential smoothing to calculate the weight that was to be assigned to the predicted value. In this process, the amount of smoothing to be done on the trend constant has been specified by another betel smoothing parameter. The alpha and beta values must vary from 0 to 1. They must be selected to generate the most accurate predictions. The first values for F1 and T1 must also be carefully chosen. Data collection:

For the years 2010-2017, sales data for Suzuki Swiftwas obtained in the United States (Table 1, Figure 1). This data set was applied to all time series forecasting techniques.

		SUZUKI	SWIFT SA	ars)				
	2010	2011	2012	2013	2014	2015	2016	2017
January	4738	3124	3715	3617	3810	8683	7549	5065
February	5114	3694	7350	6023	649	8453	9992	8297
March	5839	8547	9036	7658	9315	12163	12263	9220
April	5245	8280	7701	7451	7143	13844	12126	8163
May	10,125	6107	10,327	8697	9861	12616	11327	7795
June	8914	8735	10,163	9543	7431	12719	9476	6286
July	7189	6205	7171	5468	6264	8782	9165	NA
August	5670	5418	6487	5466	5478	9497	8199	NA
September	5460	5154	4339	4320	3258	9356	6329	NA
October	5417	4798	5428	6818	4465	10086	5314	NA
November	4193	3765	5409	5476	8828	7386	6296	NA
December	5352	5157	5437	5827	9411	8842	7054	NA
Total	73256	68984	82563	76367	75913	122427	105090	44826

Table 1: US Sales (Cain, 2017) Suzuki Swift Sales

Data analysis:

Fig.2: Suzuki Swift U.S. sales data last year

RESULTS AND DISCUSSION

Tables 2 and 3 below summarize the results. Table 2 covers all estimates using the average moving and plain, double or triple exponential smoothing methods. The predictions in Table 3 are based on the ARIMA model.

Table 2: Predicted values using the models MA, SES, DES and winter

	2017	Moving	Average	SES	DES	Winter's model from year		
	(Actual sales)	(3)	(5)			2014	2015	2016
Jan	5146	6618	5400	5254	5110	4251	7173	4175
Feb	8198	8186	7546	6329	6511	6763	7422	6190
Mar	9220	12510	11253	7783	8708	9775	11440	7288
Apr	8263	12038	9833	7148	8458	7875	12751	7299
May	7295	12235	11586	12160	11012	12496	1202	5496

Jun	6286	9509	9426	8786	9522	8421	9115	5150
Jul	9465	8104	7450	7477	7227	7188	6246	4281
Aug	8399	8458	7485	6437	6751	6463	7462	3420
Sep	6329	6448	5480	5731	5450	3228	7247	2858
Oct	5314	6592	6764	5473	5888	4870	7641	2241
Nov	6296	7413	6519	5255	5619	9523	5517	2239
Dec	7044	8449	7326	6354	6477	11424	6515	2264

Table 3: Forecasted values by means of ARIMA

	(Non-sease	onal) ARIN	IA (1,1,0)	(Seasonal) ARIMA (2010 - 2016)					
	from year	s:							
	2014	2015	2016	(1,1,0) (1,0,0)	(1,1,0) (1,0,0)	(1,1,1)(1,1,1)			
Jan	8038	8558	7350	6744	6111	6056			
Feb	7323	8573	8420	7691	6294	7531			
Mar	7111	8552	8416	8221	10366	10548			
Apr	6950	8544	9364	8146	10321	10102			
May	6941	8575	9482	6593	10354	12414			
Jun	6845	8547	11081	6405	9149	11791			
Jul	6843	8549	12467	6382	6173	8546			
Aug	6848	8521	11845	5478	7457	8647			
Sep	6826	8512	12218	4401	6846	7422			
Oct	6845	8414	12588	4227	7348	8715			
Nov	6814	8416	12956	4192	4817	8018			
Dec	6863	8472	12122	4202	6314	8861			

Table 4: Absolute Mean Variance (MAD) for predicted values

			Mean	Mean Absolute Deviation (MAD)								
MA		SES	DES	Winter's model (Non-Seasonal) ARIM		MA	(Seasonal) ARIMA					
(3)	(5)			2014	2015	2016	2014	2015	2016	2010-2016		
1172	451	107	35	855	2327	271	3012	3512	2714	1278	1145	1030
13	651	1859	1687	1235	1376	2218	925	225	23	1017	2114	774
2290	1123	1247	222	825	1420	1722	2029	548	303	729	1146	1518
2875	1680	814	285	278	2588	865	1083	441	1221	123	2648	1949
3540	2681	2245	2217	2611	3247	2289	944	640	1777	912	3049	4329
3423	3550	2810	3234	2015	3129	1146	629	2371	385	429	2923	5315
1261	2025	1778	2135	2488	2219	4854	2592	1056	912	3283	3312	1069
251	1024	1752	1644	1926	417	4449	1331	222	2556	2221	833	307
82	845	591	877	3011	928	3651	427	2083	4799	1528	384	1053
1288	1040	354	575	424	2227	3243	1251	3070	6164	1387	1914	3371
1217	384	954	568	3437	649	3957	658	2280	5730	1704	1349	1832
1385	253	727	488	3460	549	4770	210	1424	5228	2462	851	1887
1611	1319	1283	1145	1789	1703	2788	1278	1483	2955	1366	1832	2043

From the table above, 115, as a result of predictions made using a double exponential smoothing method (Holt method), can be seen as the least observed Insane. A simple exponential smoothing and ARIMA (1,1,0) using the non-seasonal model to forecast data from 2014 to 2017 were the next best examples for this scenario. The ARIMA (11.0), which forecast data from 2016 to 2017, is the system with the highest MAD. The predicted values with MA (3) are yet another important observation in Table 4. The Insane was found to be at least 12 and 81 respectively for periods 2 and 9. It must however be remembered that the MADs were found to be quite deviant for the following times. This shows one of the inconveniences of the typical moving system, since data are excluded from the defined definition. In addition, the SES and DES MAD at the start of the data series appears to have fluctuated from Table 4, but the forecasts are stabilized in subsequent periods (e.g. 9-12). The predictions of the 2016 data have also increased dramatically following period 7 for non-seasonary ARIMA and winter models.

CONCLUSION

The global effect in Supply Chain Management offers companies the chance to increase sales and reduce costs at the same time. There appears to be no ambiguity in the management of the global supply chain. A business

has seen fluctuation in demand, costs, exchange rates and the competitive climate over the span of its supply chain network. If conditions change, a decision that looks really good in the current climate may be very bad. The benefit of building versatile production capacity in one plant is dictated by unsure demand and quality. Mature, stable demand products are generally more easily predicted. Provision and subsequent management decisions become extremely complicated because either the raw material supply or the demand is highly volatile for the finished product. For the design of the supply chain and its response, therefore an estimate of the forecast error is necessary. Different time-series models for automotive sales from 2010 - 2016, including average moving smoothing, single, double and triple exponential smoothing and the Ares model have been used and are analysed in order to achieve precision with the use of a mean absolute deviation. Sales forecast was rendered using Microsoft Excel and Minitab. Two models of exponential lining, followed by simple exponential lining, have been defined as being the best fit for the collected data taking into account the prediction parameters used. No one is the perfect way to forecast data as accuracy of predictions can be improved with the right parameters in all models. The advantages and disadvantages of all models in forecast results. The appropriate model must therefore be carefully chosen to match any data. Projection is a very difficult but fascinating job. It can take longer to find the correct model for each specific data set, but once the model has matched best, reliable results can be expected. Precise projections allow companies to prepare their businesses accordingly.

REFERENCES

- 1. A. V. Ramani, "Comparative analysis of different forecasting techniques for Suzuki Swiftsales data," in Proceedings of the International Conference on Industrial Engineering and Operations Management, 2018.
- A. Roskladka, N. Roskladka, O. Dluhopolskyi, G. Kharlamova, and M. Kiziloglu, "Data analysis and forecasting of tourism development in Ukraine," Innovative Marketing. 2018, doi: 10.21511/im.14(4).2018.02.
- 3. C. Prentice, "Testing complexity theory in service research," J. Serv. Mark., 2019, doi: 10.1108/JSM-09-2019-0353.
- 4. 37–41. http://doi.org/10.1037/a0022390 Tuma J. M. & Pratt J. M. (1982). Clinical child psychology practice and training: A survey. \ldots of Clinical Child & Adolescent Psychology 137(August 2012) et al., Detecting diseases in medical prescriptions using data mining tools and combining techniques. 2016.
- 37–41. http://doi.org/10.1037/a0022390 Tuma, J. M., & Pratt, J. M. (1982). Clinical child psychology practice and training: A survey. \ldots of Clinical Child & Adolescent Psychology, 137(August 2012) et al., "Stanovich and West's (2007) Actively Open-Minded Thinking Scale: An Examination of Factor Structure," Annu. Meet. Assoc. Psychol. Sci., 2011.
- 6. R. (200. R. from http://www. sciencedirect. com/science/article/pii/S0169555X1200381. Carley, J., Pasternack, G., Wyrick, J., & Barker, J. (2012). Significant decadal channel change 58–67years post-dam accounting for uncertainty in topographic change detection between contour maps and point cloud models. Geomorphology, Caballero, Y., Cheva et al., "RESTORING THE FISH FAUNA CONNECTIVITY OF THE HÂRTIBACIU RIVER-RETIŞ DAM STUDY CASE (TRANSYLVANIA, ROMANIA).," Acta Oecologica, 2017.
- 37–41. http://doi.org/10.1037/a0022390 Tuma, J. M., & Pratt, J. M. (1982). Clinical child psychology practice and training: A survey. \ldots of Clinical Child & Adolescent Psychology, 137(August 2012) et al., "Epistemology and uncertainty: A follow-up study with third-year medical students," Fam. Med., 2012.
- T. (2010). M. in C. reservoirs. E. P. R. Icom/article/10.1007/s00027-008-8099-9 Watanabe, K., Monaghan, M., & Omura, T (2008). Longitudinal patterns of genetic diversity3820 Larssen et al., "RESTORING THE FISH FAUNA CONNECTIVITY OF THE HÂRTIBACIU RIVER-RETIŞ DAM STUDY CASE (TRANSYLVANIA, ROMANIA).," Acta Oecologica, 2017.
- 37–41. http://doi.org/10.1037/a0022390 Tuma, J. M., & Pratt, J. M. (1982). Clinical child psychology practice and training: A survey. \ldots of Clinical Child & Adolescent Psychology, 137(August 2012) et al., "The Existential-Phenomenological Paradigm: The Importance for Psychotherapy Integration," J. Chem. Inf. Model., 2013, doi: 10.1017/CBO9781107415324.004.
- J. M. Tuma & Pratt, J. M. (1982). Clinical child psychology practice and training: A survey. \ldots of Clinical Child & Adolescent Psychology, 137(August 2012), 37–41. http://doi.org/10.1037/a0022390 et al., "Preface," Radicalizing Enactivism: Basic Minds without Content, 2013, doi: 10.1080/09515089.2013.804645.
- 11. R. M. Kramer et al., "Linkages Between Stock Market and Sovereign Credit Default Swaps Market," J. Bank. Financ., 2016, doi: 10.1016/j.qref.2005.11.007.
- 37–41. http://doi.org/10.1037/a0022390 Tuma, J. M., & Pratt, J. M. (1982). Clinical child psychology practice and training: A survey. \ldots of Clinical Child & Adolescent Psychology, 137(August 2012) et al., "Towards a Cognitive Memetics: Socio-Cognitive Mechanisms for Memes Selection and Spreading 1 Cognitive Autonomy and Mediation in Cultural Transmission," J. Memet., 2010.