
Journal of Contemporary Issues in Business and Government Vol. 26, No. 03, 2020  
https://cibgp.com/         

                                                                                  P-ISSN: 2204-1990; E-ISSN: 1323-6903  

                                                                                  DOI: 10.47750/cibg.2020.26.03.011 
 

 

International Conference on Trending Application in Science and Technology 

97 

 

FLOWGAURD APPLICATION IN FLOODLIGHT FOR SECURED AND 

RELIABLEECURED SOFTWARE DEFINED NETWORKS 

 
1G Harika Assistant Professor, 

harikagora@gmail.com, 
2Dr. J Rajaram  Professor, 

drrajaram81@gmail.com, 
3S Raju Assistant Professor, 

srajunayak@gmail.com, 
4E Muralidhar Reddy  Assistant Professor,  

krishna81.reddy@gmail.com, 

Department of CSE Engineering, 

Pallavi Engineering College, 

Kuntloor(V),Hayathnagar(M),Hyderabad,R.R.Dist.-501505. 
 

 
Abstract: - Software-Defined Networking (SDN) provides 

network-wide access to programmers and direct control from 

a theoretically centralized controller over the underlying 

switches. SDN proposes a positive path for the Internet to 

grow in the future. However, SDN has several modern 

protection problems as well. How to develop a stable firewall 

programme for SDN is a vital task for them. Since the 

stateless property of the Open Flow-based SDN firewall lacks 

audit and monitoring mechanisms, current SDN firewall 

implementations may also be easily bypassed by rewriting the 

switch flow entries. Focusing on this hazard, by testing flow 

space and firewall authorization space, we implemented a 

novel approach for dispute detection and resolution in Open 

Flow focused firewalls. Unlike Fortnum, based on the whole 

flow paths inside an Open Flow network, our method will 

verify the contradictions between the firewall rules and flow 

policies. Finally, for flow tables and firewall guidelines, we 

introduced intra-table dependency testing. 

 

Keywords: - Networks Identified Applications, Firewalls, and 

Space Analysis Header. 

 

I. INTRODUCTION 

 

It is an arduous process to run and manage a 

computer network. Network operators need to 

configure each individual network system separately 

from a heterogeneous set of switches, routers, 

middle boxes, etc., to communicate the appropriate 

high-level network policies, utilizing vendor-

specific and low-level commands. Networks are 

dynamic in addition to configuration complexities, 

and operators have little or no tools to react 

automatically to network incidents. In such a 

constantly evolving climate, it is often difficult to 

implement the necessary policies. Network switches 

become basic forwarding machines with the 

isolation of the control plane from the data plane 

that lays the foundation for the Software Specified 

Networking model, and control logic is applied in a 

logically centralized controller. 

 

An innovative network architecture implemented at 

Stanford University is Software Based Networking 

(SDN). This helps programmers, by machine 

engineering, to monitor and identify networks, 

which makes it known as advancement in the field 

of networking. As the central SDN technology, 

Open Flow (OF) [1] is a modern paradigm of 

network transfer that distinguishes network access 

and flow features. Users can monitor the activity of 

packets on networks in this model by integrating 

flow inputs into the switches. Switches and routers 

are implemented in a conventional network data 

plane and control plane, while SDN decouples those 

two flights. In an SDN, the control plane monitors 

the flow tables in the switches by utilizing a modern 

technique named the Open Flow protocol. The 

control plane, in this sense, understands the unified 

control over the whole network. For specialized 

work, a controller can compute the shortest flow 

paths and monitor the forwarding actions made by 

the switches. A device, a virtual machine, or a 

physical server might be the controller [2]. 

 

SDN has two critical functions. Next, an SDN 

distinguishes the control plane from the data plane 

(which determines how to manage the traffic) 

(which forwards the traffic according to decisions 

that the control plane makes). Second, the control 

plane is consolidated by an SDN, meaning different 

data plane components are managed by a single 

machine control programme. The SDN control plane 

maintains direct control over the state of the data 

plane elements (i.e., routers, switches, and other 

middle boxes) of the network using a well-defined 

application programming interface (API). A popular 

example of such an API is Open Flow. An Open 

mailto:harikagora@gmail.com
mailto:drrajaram81@gmail.com
mailto:srajunayak@gmail.com
mailto:krishna81.reddy@gmail.com


Journal of Contemporary Issues in Business and Government Vol. 26, No. 03, 2020  
https://cibgp.com/         

                                                                                  P-ISSN: 2204-1990; E-ISSN: 1323-6903  

                                                                                  DOI: 10.47750/cibg.2020.26.03.011 
 

 

International Conference on Trending Application in Science and Technology 

98 

 

Flow transfer has one or more packet-handling rules 

tables. Each law suits a traffic subset and conducts 

those traffic acts that conform to a rule; activities 

involve falling, routing, or flooding. An Open Flow 

switch will act like a router, switch, firewall, 

network address converter, or anything in between, 

depending on the rules installed by the controller 

application [3, 17]. 

 

While SDN offers many advantages in network 

growth, it also poses several new protection 

challenges. How to develop a stable firewall 

programme for SDN networks is one such problem. 

An important restriction of Open Flow is that it is 

stateless. For instance, if a host or network system 

sends a flow to the network, the controller will 

review only the first packet of the flow, while the 

resulting packets will be transmitted immediately by 

the switches without any exploration. The controller 

still has no audit or monitoring system set up for 

flows. Therefore, the current SDN firewall 

programme could easily be bypassed by 

intentionally adding the flow entries with rewriting 

operations [4]. 

A comprehensive methodology for dispute 

identification and resolution in SDN firewall is 

applied to resolve such a hazard by testing flow 

space and firewall permission space. To figure out 

how the flow paths interfere with the firewall rules, 

first browse the flow paths in the whole network and 

verify them against all firewall denial rules. Then, in 

the firewall guidelines or the flow tables, display 

various dispute mediation techniques according to 

different activities. Considering that the address 

space of a flow route can vary from the address 

space of the conflicting firewall laws, a mechanism 

was implemented to insert unique blocking flow 

input into the entry port or the exit port (they clearly 

identify the IN (Entry) and OUT traffic coming in) 

(Egress). Physical ports are not applied to them. 

They just refer to where the traffic starts from and to 

where it goes. It's all virtual, which is why the flow 

route is named entry and exit instead of 'incoming' 

and 'outgoing' ports). The firewall programme may 

use this tool to block packages that are in dispute 

with the firewall rules without interrupting any usual 

packages. A monitoring framework for flows can be 

developed by building and preserving a shifted flow 

graph, thereby addressing the bypass issue 

fundamentally. 

 

2. EMPLOYMENT CONNECTED 

The protection challenges in SDN have drawn 

further interest lately with the rapid advances in 

SDN techniques. 

 

Son et al., [1] have implemented FLOVER, a model 

control framework that verifies that the flow policy 

aggregate instantiated inside the Open Flow network 

is not in violation of the network protection policy. 

Their framework identifies faults that lead to invalid 

and invisible paths, but firewall rules are not 

regarded. 

 

R. Sherwood et al. [2] [3] suggest FlowVisor, which 

allows stable network functions to be segmented 

into separate virtual machines by segmenting or 

splitting network access. A self-consistent OF 

application is regulated by each network domain, 

which is architected to not interact with OF 

applications that rule other slices of the network. In 

this way, the protection of Open Flow is cast as a 

property without intervention. However, the issue 

persists that a network provider can also choose to 

instantiate network protection restrictions that must 

be implemented within the slice, even inside a 

specified network slice. 

Alou et al., [4] suggested verification toll for the 

firewall that takes input of a firewall policy and a 

specified property, then outputs if the property is 

fulfilled by the policy. Using decision diagrams, Liu 

developed and applied a verification algorithm and 

checked it on both real-life firewall policies and 

large-scale synthetic firewall policies. 

 

Alou et al., [5] did some work on modeling 

protection strategies for firewalls. These studies do 

not, however, discuss the complex existence of flow 

rules in networks specified by software. 

 

E. Al-Shaer et al.,[6] conducted some Flow 

Checker-related work that encodes OF flow tables 

into the Binary Decision Diagram (BDD) and uses 

model testing to validate protection properties and 

verify that the OF network is divided into 

equivalence groups to effectively check for invariant 

property violations [7]. However, intermediate 

behavior such as set and got commands are not 

discussed directly by these programmers. 

 



Journal of Contemporary Issues in Business and Government Vol. 26, No. 03, 2020  
https://cibgp.com/         

                                                                                  P-ISSN: 2204-1990; E-ISSN: 1323-6903  

                                                                                  DOI: 10.47750/cibg.2020.26.03.011 
 

 

International Conference on Trending Application in Science and Technology 

99 

 

M. Canine et al., [8] suggested the usage of 

symbolic execution by Good to check conformity 

with OF applications. Such approaches to route 

discovery do not, however, scale well for broad 

applications. 

 

N. McKeon et al. [9] implemented the OpenFlow 

transfer principle and used it in numerous 

implementations, such as NOX (Network operating 

system) and Flow Visor (A network virtualized 

layer). The work done on Open Flow switches did 

not discuss the issues of conflict analysis and testing 

of the concept; instead, it demonstrated the simple 

Open Flow model design and how it can be used to 

provide the physical network with conceptual 

separate networks. 

 

R. Sherwood et al.,[10] implemented the 

virtualization layer of the network, where a 

development network is broken into several virtual 

networks that concurrently execute multiple 

experiments, each with its own forwarding decision. 

 

M. Uh, Casado et al,. [11][12] Recommended a 

modern framework for corporate network defense. 

The SANE [11] defense layer suggests a fork-lift 

(clean-slate) solution to corporate network security 

enhancements that implements a centralized server, 

i.e., a domain controller, to authenticate all network 

elements and to grant access to services in the form 

of capabilities implemented at each switch. Ethane 

[12] is a more realistic and backward-compatible 

SANE instantiation that does not need end hosts to 

be changed. Alongside standard network switches, 

Ethane switches live and connect with the unified 

control that implements policy. Both experiments 

may be used as catalysts for Open Flow and 

software-defined networking to evolve. 

 

Went et al.,[13] suggested as the first line of 

protection, PermOF, a fine-grained authorization 

method, to extend minimum privilege to 

applications. They summarized a list of 18 

permissions to be implemented in the controller's 

API entry. 

3. GAPS OBSERVED 

SDN was only launched a number of years back, 
as a modern network paradigm. Because it enables 
network programmers to work directly with 
switches on the networks, it poses a number of 

protection challenges. The following are the study 
holes identified: 

 The firewall rules do not consider the discovery 
of errors leading to invalid and unseen routes in 
current approaches [1]. 

 Existing Open Flow structures in software-
defined networks are stateless and do not 
resolve the complex existence of flow rules [4] 
[5]. 

 The dispute between the separate 
implementations in the current SDN controllers 
[15] is not regarded. 

 Firewalls or other protection applications may be 
quickly bypassed in the current architecture 
[14] by introducing intentional flow tables. 

 New approaches [14] do not take into 
consideration the intra-table dependence 
between firewall rules and flow entries. 

In the current framework, there is no audit or 
monitoring methods in the controller package for 
flows. 

For large applications, current systems [8] do not 
scale well. 

The above problems have been established as 
priorities for the planned work in this respect. 

 

4. PROPOSED WORK'S 

 

Software Defined Networking (SDN), offers 

programmers with network-wide insight and power 

from a logically unified controller over the 

fundamental switches, not only has an immense 

effect on computer network growth, it also provides 

a promising way for potential internet creation. 

There are several threats to protection that fall into 

the frame. How to develop a stable firewall 

programme for SDN is one such problem. The new 

SDN firewalls can be quickly bypassed by rewriting 

the flow entries in switches due to the stateless 

property of the Open Flow-based SDN firewall and 

the absence of monitoring and audit mechanisms. In 

Open Flow-based firewalls, a comprehensive 

approach to dispute identification and resolution by 

testing flow space and firewall permission space is 

implemented to concentrate on this hazard. Unlike 

Fortnum [14], based on the whole flow paths inside 

an Open Flow network, the proposed solution will 

verify the contradictions between the firewall rules 

and flow policies. It is also important to incorporate 

intra-table dependence testing for flow tables and 

firewall laws. Finally, the implementation of the 

proposed solution is discussed as a proof-of-concept 



Journal of Contemporary Issues in Business and Government Vol. 26, No. 03, 2020  
https://cibgp.com/         

                                                                                  P-ISSN: 2204-1990; E-ISSN: 1323-6903  

                                                                                  DOI: 10.47750/cibg.2020.26.03.011 
 

 

International Conference on Trending Application in Science and Technology 

100 

 

and preliminary findings would prove that the 

approach will successfully deter bypass attacks in 

actual Open Flow networks. 

5. METHODOLOGY 

A. Header Space Analysis: 

The suggested algorithm for dispute 

identification and settlement is focused on Header 

Space Research. HSA offers a standardized and 

protocol-agnostic architecture of the network that 

utilizes a geometric packet processing model. A 

header is specified as a {0, 1} L space point called 

the header space (L is the packet's length (in bits)). 

Network boxes are modeled using Switch Transfer 

Function T, which moves the obtained header h to a 

packet header set on one or more output ports in the 

input port: 

 

  

B. Shifted Flow Space and Authorization Space: 

In order to verify if the firewall rules clash with 

Open Flow switch flow tables, all packets should be 

monitored and all destinations reached by the 

packets should be determined and the header space 

at each destination should be calculated. It is 

important to equate the source address and 

destination address in the header space of a flow 

path with the address space obtained from the 

firewall policy. The flow laws are known to 

interfere with the firewall protocol if they have an 

intersection. 

The firewall rule usually consists of 5 fields: source 

address, source port, address of destination, port of 

destination, and protocol. A flow path's input header 

space is made up of three fields: source address, 

source port, and protocol. There are two fields in the 

output header space of the flow path: the destination 

addresses and the destination terminal. The source 

and endpoint of a traffic flow path can be defined by 

the entry and exit space that constructs a monitored 

space of a flow path. A flow graph is generated by 

all flow routes, and is called the net plumbing graph 

[15]. 

The recommended approach to dispute resolution 

only takes into consideration the flow pathways that 

have rewriting actions, as the key goal is to obstruct 

the challenges to an SDN firewall bypass. The flow 

paths that comprise of flow entries rewriting moved 

flow paths. A network called Shifted Flow Path 

Graph composes such shifted flow paths. 

Additionally, the rules in a firewall provide an 

Authorization Area. Compare the Refuse Permission 

Space and the Sifted Flow Route Space while 

finding contradictions between the firewall protocol 

and flow policies. 

C. Identification and Settlement of Conflict: 

The Reject Permission Space and the Moved Flow 

path Space need to be considered before detecting 

conflicts. Detect if they have intersections with each 

law in the Refuse Permission Space and the 

monitored space in each moved flow direction, if so; 

say that there is a discrepancy between the firewall 

rules and the flow policies. 

Delete the whole flow route in the network to 

address those disputes or fail to introduce a flow 

entry that would create conflicts. Then, by adding 

corresponding deny rules of higher priority; block 

the conflicting portion of a flow path. Consider, for 

instance, a flow path having a 100x source address 

and a 110x destination address. 101 xs to 11xx: 

DENY" is the firewall deny rule." Hence, the flow 

direction clashes with this law. A new flow rule 

'1001 ⁇ 111x: DENY' is inserted in the flow path 

entry switch to settle this dispute, and a new flow 

rule '101x ⁇ 1100: DENY' is inserted in the egress 

switch to block the flow path conflict portion. 

1) Introducing Additional Guidelines for 

Firewalls: 

Adding new rules to the firewall can trigger firewall 

policy and flow policy conflicts. If the current laws 

do not deny conduct, they may not establish threats 

to circumvent them. So, there should be more focus 

on refusing laws. Second, search the Refuse 

Permission Space before finding the conflicts. By 

testing the conflicting relationships with other deny 

laws, detect the latest deny room added to the 

firewall. Then, have the Moved Flow Direction 

Space monitored space and then search the disputes 

between the current Reject Permission Space and 

the tracked space. 

If disputes still remain, it is possible to overcome 

the flow path conflicts by applying new reject laws 

to the ingress switch and the egress switch. If new 

deny space is added by the new inserted firewall 

law, dispute flow paths can occur in the network due 

to the rewriting of the packet header field 

information. The monitored space tracks, thus, the 

source and destination of the flow direction. The 

disputes can be easily identified by closely 

contrasting the monitored space with the firewall 

permission space. If the monitored space is less than 

the refused oppressive space by the firewall, this 

proposal for inclusion is declined. But if the 



Journal of Contemporary Issues in Business and Government Vol. 26, No. 03, 2020  
https://cibgp.com/         

                                                                                  P-ISSN: 2204-1990; E-ISSN: 1323-6903  

                                                                                  DOI: 10.47750/cibg.2020.26.03.011 
 

 

International Conference on Trending Application in Science and Technology 

101 

 

monitored room in the firewall is greater than the 

recently added deny space, block the conflicting 

portion of the flow path only. 

2) Introducing New Entries in Flow: 

As network applications or controllers insert new 

flow entries into the flow tables, new firewall policy 

disputes can occur. Adjust the Shifted Flow Path 

Graph before testing the conflicts, so the latest 

added flow entry will alter existing flow paths 

and/or build new flow paths, which can contribute to 

new conflicts. Once the disputes are found, the 

desired dispute resolution approach only has to 

obstruct the overlapping section of the flow path at 

its entry switch, as opposed to introducing 

additional firewall laws. If the monitored room is 

lower, the appeal for additional flow entry to be 

inserted would be explicitly denied. 

6. CONCLUSION 

We tackled the task of designing a secure SDN 

firewall in this work. In our method, binary vectors 

are first represented by the source and destination 

addresses of firewall rules and flow entries. Then, 

by contrasting the moved flow space and refusing 

firewall authorization space, contradictions between 

firewall rules and flow rules are reviewed. The rule 

dependencies in both flow tables and firewall rules 

are known throughout the identification of disputes. 

In addition, a fine-granted dispute settlement is 

given by our method. Finally, in Floodlight [18], we 

deployed our FLOWGUARD security-enhanced 

SDN firewall programme. Our experiment shows 

that our programme would avoid bypass attacks on 

Open Flow networks easily and efficiently. 

References 

[1] Son, S., Shin, S., Yegneswaran, V., Porras, P.: Model 

Checking Invariant Security Properties in OpenFlow. In: Proc. 

of ICC 2013, pp. 2–6, 2013. 

 

[2] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. 

Casado, N. McKeown, and G. Parulkar. Can the Production 

Network Be the Testbed. In Proceedings of the Use nix 

Symposium on Operating System Design and Implementation 

(OSDI), 2010. 

 

[3] OpenFlowHub. BEACON. 

http://www.openflowhub.org/display/Beacon. 

 

[4] A. Liu. Formal Verification of Firewall Policies. In 

Proceedings of the International Conference on 

Communications (ICC), 2008. 

 

[5] A. Liu and M. Gouda. Diverse firewall design. IEEE 

Transactions on Parallel and Distributed Systems, 2008. 

 

[6] E. Al-Shaer and S. Al-Haj. Flow checker: configuration 

analysis and verification of federated open flow infrastructures. 

In Proceedings of the 3rd ACM workshop on Assumable and 

Usable Security Configuration, 2010. 

 

[7] A. Churched, W. Zhou, M. Caesar, and P. B. Godfrey. 

Overflow: Verifying Network-Wide Invariants in Real Time. In 

Proceedings of ACM Sitcom Hosted Workshop, 2012. 

 

[8] M. Canine, D. Venango, P. Pereˆs´ıni, D. Kosti´c, and J. 

Rexford. A NICE Way to Test OpenFlow Applications. In 

Proceedings of NSDI, 2012. 

 

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, 

L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow: 

enabling innovation in campus networks. SIGCOMM Comput. 

Commun. Rev., 38(2):69–74, 2008. 

 

 

[10] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. 

Casado, N. McKeown, and G. Parulkar. Flow visor: A network 

virtualization layer. Technical Report OpenFlow Technical 

Report 2009-1, Deutsche Telekom Inc. R&D Lab, Stanford 

University, Nicer Networks, October 2009. 

 

[11] M. Cased, T. Garfunkel, M. Freedman, A. Avella, D. Bone, 

N. McEwen, and S. Shankar. SANE: Protection Architecture 

for Enterprise Networks. In Proceedings of the Use nix Security 

Symposium, 2006. 

 

[12] M. Cased, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, 

and S. Shankar. Ethane: Taking Control of the Enterprise. In 

Proceedings of ACM SIGCOMM, 2007. 

 

[13] Wen, X., Chen, Y., Hu, C., Shi, and C.: Towards a Secure 

Controller Platform for OpenFlow. In: Proc. of HotSDN 2013 

(2013). 

 

[14] Porras, P., Shin, S., Yegneswaran, V., Fong, M.: A 

Security Enforcement Kernel for OpenFlow Networks. In: 

Proc. of HotSDN 2012, pp. 123–125 (2012) 

 

[15] Kazemian, P., Chang, M., Zeng, H.: Real Time Network 

Policy Checking using Header Space Analysis. In: Proceedings 

of the Symposium on Network Systems Design and 

Implementation (NSDI), pp. 4–6 (2013). 

 

[16] Nate Foster, Micheal J. Freedman, Arjun Guha, Rob 

Harrison, Naga Praveen Katta, Christopher Monsanto, Joshua 

Reich, Mark Reitblatt, Jennifer Rexford, Cole Schlesinger, Alec 

Story and David Miller, Languages for Software Defined 

Networks. 

 

[17] Nick Feamster, Jennifer Rexford, Ellen Zeruga, The Road 

to SDN: An Intellectual History of Programmble Networks. 

 

[18] Floodlight: Open SDN Controller. 

http://www.projectfloodlight.org. 

 

 


