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ABSTRACT 
Because of the huge effect sizes seen in crosses between inbred strains, high-resolution mapping of 

quantitative trait loci (QTL) in animals has proven to be problematic. Each has a little impact. We've 

discovered that mice are more scared than previously thought. small-effect QTLs may be fine-mapped in 

a genetically diverse population the stock market (HS). This is a great overall technique for fine-tuning. 

given that QTLs are found in crosses between inbreds, the mapping process The HS may be used to 

identify the strains that generated theHS. Weshow Only two of the five candidates are found in this study 

using a single-marker association analysis. In the HS, QTLs are predicted to be segregated, which 

presumably restricts the number of QTLs. For precise mapping, strategy is crucial. With this issue, we 

come up with a novel solution. allele descent probabilities may be calculated using multipoint analysis. 

from each of the HS's ancestors. Pedigrees are not used in the study. but instead calls for data on the 

haplotypes of the HS's founding fathers. We were able to locate all three previously unidentified loci 

using this strategy. Chr. 1 logP 4.9, Chr. 10 logP 6.0, and Chr. 15 logP 4.0 [chromosomes]. Wesingle-

marker association fails because of this reason its inability to discriminate between the phenotypic 

impacts of competing QTLs when both markers are found on the same allele of the gene We've created a 

new product. QTL mapping in genetically diverse populations using a robust technique genetic testing on 

animals and claim that it is now cost-effective simultaneous, high-resolution examination of several 

complicated characteristics a group of mice 

INTRODUCTION 

Most phenotypes of medical importance can be measured quantitatively, and in many cases the genetic 

contribution is substantial, accounting for 40% or more of the phenotypic variance. Considerable efforts 

have been made to isolate the genes responsible for quantitative genetic variation in human populations, 

but with little success, mostly because genetic loci contributing to quantitative traits (quantitative trait 

loci, QTL) have only a small effect on the phenotype (1). Association studies have been proposed as the 

most appropriate method for finding the genes that influence complex traits (2). However, family- based 

studies may not provide the resolution needed for posi- tional cloning, unless they are very large, whereas 

environmental or genetic differences between cases and controls may confound population-based 

association studies (3) These difficulties have led to the study of animal models of human traits. Studies 

using experimental crosses between inbred animal strains have been successful in mapping QTLs with 

effects on a number of different phenotypes, including behavior, but attempts to fine map QTLs in 

animals often have foundered on the discovery that a single QTL of large effect was in fact caused by 

multiple loci of small effect positioned within the same In an attempt to circumvent the difficulties 

encountered with inbred crosses, we have been using a genetically heterogeneous stock (HS) of mice for 

which the ancestry is known. The hetero- geneous stock was established from an eight-way cross of 

C57BL, BALB/c, RIII, AKR, DBA/2, I, A, and C3H/2 inbred strains (5). 

Since its foundation 30 years ago, the stock has been maintained by breeding from 40 pairs and, at the time 

of this experiment, was in its 60th generation. Thus each chromosome from an HS animal is a fine-grained 

genetic mosaic of the founder strains, with an average distance between recombinants of 1/60 or 1.7 cM. 
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Theoretically, the HS offers at least a 30-fold increase in resolution for QTL mapping compared with 

an F2 intercross (6, 7). The high level of recombination means that fine mapping is possible by using a 

relatively small number of animals; for QTLs of small to moderate effect, mapping to under 0.5 cM is 

possible with fewer than 2,000 animals. The large number of founders increases the genetic 

heterogeneity, and in theory one can map all QTLs that account for progenitor strain genetic differences. 

Potentially, the use of the HS offers a substantial improvement over current methods for QTL mapping. 

However, for HS mapping to achieve widespread use, we need to establish its limitations and provide a 

robust statistical method of analysis. In this paper we describe a multipoint method capable of detecting 

small-effect QTLs in the HS; we evaluate both its power of QTL detection and the expected degree of 

QTL resolution. The utility of the method is demonstrated by fine mapping five QTLs for fearfulness in 

HS mice, only two of which were detectable by single-marker (SM) association. 

Statistical Theory 

Failure of SM Association Analysis. It has been noted in association studies in human populations that 

SM association analysis may fail to detect QTLs expected to be segregating (1). We encountered the same 

problem in a study (8) of open-field behaviors of HS mice, a validated animal model of susceptibility to 

anxiety (9). We typed a total of 67 markers approximately 1 cM apart on 750 HS mice, over five regions 

where previous F2 intercrosses had detected QTLs (refs. 10 and 11; Table 1). We expected to  

 

confirm QTLs in all five regions because the strains that were used in the F2 detection experiments were 

among the founders of the HS. We used SM analysis of variance to map the QTLs. At each marker the 

animals were grouped according to their genotype and one-way ANOVA was used to test for significant 

differences between the group means. Marker-QTL association was indicated by a significant F-statistic 

in the ANOVA. We confirmed and fine mapped QTLs in only two of the five regions (Table 1). On 

chromosome 1 a QTL accounting for 6% of the phenotypic 

variance was mapped into an interval of 0.8 cM, so in some 

circumstances SM association works well. We therefore sought 

an explanation for the three failures. 

A Multipoint Model Using Progenitors. To incorporate information 
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from flanking markers and the progenitor haplotypes, we developed 

a multipoint method that determines the probability of 

each founder strain being the ancestor of a given allele in the HS. 

QTLs then are detected by testing for differences between the 

genetic effects of the progenitor haplotypes rather than by 

association at each locus. Note that it would not help to 

reconstruct the haplotypes of the HS at the generation we tested, 

as this would not determine whether (in the example) an allele 

at D1Mit496 was derived from RIII or from one of the other 

strains. The critical issue is to calculate the probability that an 

allele is descended from one of the eight progenitors, which is 

different from standard interval mapping (12) or interval mapping 

with marker cofactors (13–15). 
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Fig. 1. SM(green) andDP(red) analyses of regions of chromosomes (Chr) 1 (A and B), chromosome 10 

(C), chromosome 12 (D), and chromosome 15 (E). Distances along each chromosome are given in cM (x 

axis). The y axis measures logP values. DP thresholds (blue) are the empirical 0.1% logP thresholds 
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derived by permuting the genotypes 1,000 times. Selected markers are labeled. 

 

locus m + 1 is in state s, t given all information from markers m+ 1 through M by running the 

algorithm backward from the terminal marker. Analysis of N individuals, M markers, and Sstrains 

requires space proportional to NMS2 and time propor- tional to NMS4. 

Results 
Significance Levels and Resolution. We examined a 10-cM region around each of the five QTLs 

identified in the F2 intercrosses (Table 1), placing markers on the radiation hybrid map and, where 

possible, the European Collaborative Interspecific Backensi genetic map to provide accurate marker 

positions necessary for the method. The results are shown in Fig. 1. 

To check the accuracy of the tabulated ANOVA significance levels, we permuted the phenotypes between 

animals and repeated the ANOVA 1,000 times, thereby taking into account the large number of markers, 

the fact that the tests are no longer independent, and that the phenotypes may not be normally distributed. 

At each marker interval the logP values were ranked, and the 5%, 1%, and 0.1% significance levels were 

defined as the corresponding percentiles. They are slightly less than their  theoretical values, so the use of 

logP derived from a tabulated F distribution is reliable and conservative. Fig. 1 shows the 0.1% 

significance levels. Additionally, the most significant permuted logP in each region was close to the 

reciprocal of the number of intervals, so the tests may be treated as independent. Therefore, to establish 

significance levels appropriate for any mapping experiment, we need only divide the individual regression 

Pvalue by the number of intervals. We analyzed a total of 63 

intervals, so the 1.0% and 0.1% logP thresholds are 3.8 and 4.8, respectively. All of the QTLs we have 

detected exceed the 1% level, and only one (near D15Mit134, logP 3.95) fails to exceed 

the 0.1% level. 
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