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ABSTRACT
Our study explores various Advanced Portfolio Diversification (APD) techniques, 
specifically Hierarchical Clustering (HC) with Hierarchical Principal Component Analysis 
(HPCA) and Dynamic Time Warping (DTW), to address the inherent estimation challenges 
associated with the traditional Mean-Variance (MV) Analysis framework. We find that these 
APD techniques significantly outperform the MV strategy in the longterm horizon across 
multiple risk-adjusted evaluation metrics. This superior performance is due to (1) the more 
diverse weight allocation of HC models and (2) the flexibility of HC models in selecting 
different risk measures. By utilizing advanced hierarchical clustering network approaches 
combined with DTW, these innovative methods refine the diversification process, mitigating 
most of the problems incurred by the MV framework, such as its strict assumptions and 
tendency to create portfolios concentrated in a few assets. 
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1. Introduc�on 

Advanced Por�olio Diversi�ca�on (APD) is a cri�cal aspect of Quan�ta�ve Wealth and 

Investment Management (QWIM), focusing on improving the Sharpe ra�o, reducing sector 

exposures and vola�lity, and mi�ga�ng skewness and tail correla�ons during market 

downturns. The Mean-Variance (MV) Analysis framework Markowitz (1989) is central to 

data-driven investment strategies, balancing risk against expected returns to construct 

op�mal por�olios for e�cient risk diversi�ca�on without compromising expected gains. MV 

achieves this through an e�cient fron�er, represen�ng asset combina�ons that op�mize 

return for a given level of risk. 

Despite its theore�cal appeal, MV o�en underperforms in real-world applica�ons, failing to 

meet expecta�ons. It is cri�cized for its sensi�vity to errors in es�ma�ng input parameters 

like expected asset returns and covariance matrices, where minor changes can dras�cally 

alter the op�mal por�olio composi�on. This issue is compounded by the di�cul�es in 

accurately predic�ng returns and the need for extensive, reliable historical data, with 

uncertain�es in returns impac�ng outcomes more signi�cantly than those in the covariance 

matrix [Chen and Zhao (2003)]. MV’s limita�ons include its assump�on of normal asset 

return distribu�ons, neglect of investor risk preferences, and a tendency to create overly 

concentrated por�olios vulnerable to input �uctua�ons [Tsiang (1989); Eichner (2008)]. 

This research explores APD strategies that overcome the tradi�onal MV framework’s 

shortcomings. By implemen�ng sophis�cated Hierarchical Clustering (HC) with Hierarchical 

Principal Component Analysis (HPCA) and Dynamic Time Warping (DTW), we introduce 

innova�ve approaches to por�olio op�miza�on. These methods address common 

es�ma�on challenges of MV, u�lizing structured clustering and �me series similarity 

algorithms to amend MV’s weaknesses. Our compara�ve analysis shows that these 

advanced por�olio management strategies signi�cantly enhance long-term performance 

and resilience, as re�ected by various risk-adjusted metrics. HC models achieve this by 

providing broader diversi�ca�on in weight alloca�on and greater �exibility in the choice of 

risk measures. 

2. Literature Review 

2.1. Cri�cism of MV Framework 

The classic MV framework remains a cornerstone of investment management [Markowitz 

(1989)], yet it has faced increasing scru�ny. Despite its widespread use, many scholars have 

iden��ed signi�cant prac�cal challenges with MV theory [Chen and Zhao (2003); Tsiang 

(1989); Eichner (2008)]. Yuan and Zhou (2022) highlight the di�culty of outperforming the 



 

naive 1/N diversi�ca�on strategy, no�ng the biases in es�mated investment strategies, 

par�cularly when the dimensionality is high rela�ve to the sample size. Addi�onally, Kinlaw 

et al. (2023) cri�que the tradi�onal reliance on correla�on measures for evalua�ng an 

asset’s diversi�ca�on poten�al. 

2.2. Advancements in Por�olio Diversi�ca�on 

In response, academic discourse has broadened to include a variety of advanced sta�s�cal 

methods aimed at re�ning diversi�ca�on strategies. Notably, Chua et al. (2009) discuss 

fullscale op�miza�on as a technique that poten�ally o�ers be�er diversi�ca�on by 

managing condi�onal correla�ons more e�ec�vely. Similarly, Martellini and Milhau (2018) 

propose a factor-based framework that promises more e�ec�ve measurement and 

management of diversi�ca�on across mul�-asset por�olios. Concurrently, Braga et al. (2023) 

introduce kurtosisbased risk metrics and a kurtosis-based risk parity strategy to distribute 

the responsibility for por�olio returns’ dispersion more evenly among assets, providing an 

alterna�ve perspec�ve on APD. 

2.3. Emergence of Hierarchical Methods 

In recent decades, hierarchical methods for por�olio diversi�ca�on have emerged to 

address the limita�ons of previous approaches. P�tzinger and Katzke (2023) introduce a 

Convex Hierarchical Op�miza�on framework (CHI) that aims to op�mize por�olio 

diversi�ca�on across dis�nct risk clusters. Fusai et al. (2020) advocate for an Equally 

Diversi�ed Por�olio (EDP), laying the founda�onal principles for the Hierarchical Equal Risk 

Contribu�on (HERC) strategy. Building on this, Ra�not (2018) elaborates on the HERC 

approach, exploring its implementa�on and e�ec�veness within hierarchical asset 

alloca�on. Ibanez (2023) presents a diversi�ed spectral por�olio using unsupervised 

learning methods, such as hierarchical agglomera�ve clustering, to achieve robust 

diversi�ca�on. Further innova�ons include the Hierarchical Risk Parity (HRP) model by 

Jaeger et al. (2021), the HPCA strategy for modeling asset correla�ons by Avellaneda (2020); 

Serur and Avellaneda (2020), and the DTW approach by Lim and Ong (2021); Lim and Ng 

(2022), which o�ers a novel method for clustering assets based on their �me-series pa�erns. 

The matura�on of HC strategies, combined with the integra�on of Machine Learning (ML), 

signi�es a pivotal shi� towards more sophis�cated �nancial strategies, highligh�ng the 

sector’s increasing reliance on computa�onal power and algorithmic insights. The growing 

�eld of ML for por�olio diversi�ca�on represents a signi�cant evolu�on in �nancial strategy, 

driven primarily by varia�ons in hierarchical clustering. Schwendner et al. (2021) emphasize 

the poten�al for enhanced performance through careful implementa�on, while no�ng that 

the de�ni�ve bene�ts and prac�cality of such approaches remain to be fully established. 

This discussion becomes par�cularly relevant in the context of ML, where Deep 

Reinforcement Learning (DRL), a key subset of ML, plays a crucial role in advancing por�olio 

diversi�ca�on strategies, as extensively explored by Millea and Edalat (2022); Sood et al. 



 

(2023). Despite DRL’s considerable promise for por�olio op�miza�on, it requires extensive 

computa�onal resources and may lead to substan�al ini�al expenses. Amidst this 

technological advance, the integra�on of advanced por�olio diversi�ca�on methods with 

predic�ve analy�cs, par�cularly through Deep Learning (DL) models, has shown notable 

success. Ma et al. (2021) 1 validate the op�mized results of advanced MV frameworks with 

Random Forest (RF), demonstra�ng the poten�al to signi�cantly improve por�olio 

op�miza�on. However, the main considera�ons for combining DL with por�olio 

op�miza�on are �me e�ciency and the penal�es during the training process, as 

sophis�cated models u�lize more resources and the machine must learn from signi�cant 

penal�es to learn how to make a pro�t. 

2.4. Contribu�ons of Our Work 

Our research signi�cantly advances por�olio diversi�ca�on by innova�vely applying HC 

families, including HPCA and DTW, to stable and long-term ETFs, overcoming the limita�ons 

of tradi�onal MV op�miza�on techniques. By leveraging cu�ng-edge advancements in 

structured clustering and temporal sequence models, our analysis navigates and rec��es the 

complexi�es inherent in conven�onal por�olio op�miza�on. Our comprehensive 

compara�ve analysis demonstrates that these novel por�olio management strategies 

signi�cantly enhance long-term performance and resilience across diverse risk-adjusted 

metrics. Consequently, our work cons�tutes a pivotal enhancement to APD strategies within 

the sphere of QWIM, se�ng new benchmarks for analy�cal depth and strategic innova�on. 

3. Models 

In this sec�on, we discussed the mathema�cal logic behind each model we chose. The main 

models we selected are the HRP model proposed by Lopez de Prado (2016) and the HERC 

model by Ra�not (2018), an improvement of HRP. The other models are further 

advancements of these two models by modifying the correla�on or distance matrices in 

inputs [Avellaneda (2020); Lim and Ong (2021); Lim and Ng (2022)]. 

3.1. HC 

This subsec�on explains the intui�ons behind the HC models – HRP and HERC. Note that 

they are similar in the overall clustering process but di�erent in some sub processes. 

3.1.1. HRP 

In 2016, Lopez de Prado (2016) unveiled the HRP algorithm, a new method for op�mizing 

investment por�olios, for op�mizing por�olios. HRP tackles previous men�oned problems 

 
1 Ma et al. (2021) validate the op�mized results of advanced MV framework with Random Forest (RF). 



 

of MV framework proposed by Markowitz (1989) by employing a hierarchy-based strategy 

and processes through three key steps: 

1. HC – categorizes assets into hierarchical clusters, which happens to have the same 

name as the overall clustering model. 

2. Quasi-Diagonaliza�on – rearranges the covariance matrix to group similar assets 

closely. 

3. Recursive Bisec�on – distributes weights among the por�olio’s assets. 

In addi�on to the bene�ts of demonstra�ng reduced sensi�vity to market �uctua�ons and 

a decreased reliance on accurate predic�ons of asset returns, HRP op�miza�on guarantees 

that within our investment strategy, assets are vying for a share of the por�olio’s weight only 

among those within their cluster, resul�ng in the crea�on of a signi�cantly more diversi�ed 

por�olio. Another advantage of HRP is the �exibility of selec�on of risk measures in addi�on 

to variances of the por�olio, which will be discussed in the �nal step of Recursive Bisec�on. 

• HC 

Hierarchical clustering organizes our assets into groups based on speci�c criteria. This 

method ensures that assets within the same cluster are similar according to these criteria. 

The aim is to build a hierarchical tree that shows clusters at di�erent levels. For example, a 

common way to measure similarity between data points is by using their Euclidean distance. 

Data points that are closer together are considered more similar. If we set a distance 

threshold, say 5, any data points within this distance are grouped together. To help visualize 

this concept, a dendrogram can be used to represent the hierarchical tree as shown in Figure 

1 below: 

 

A B C D E 

Figure 1: Dendrogram (le�) and Cluster Representa�on (right) 

First, data points C and D are the closest; thus, they are grouped together (the 

shorter y-distance linking C and D indicates their proximity). Next, E, being 

 

 

 
  



 

farther from the C-D cluster but closer than A or B, is grouped with C and D. 

Finally, A and B, being closer to each other, are grouped together. The y-

distances among these points re�ect their degrees of similarity. Speci�cally, the 

distance between the centroids of the A-B cluster and the C-D-E cluster is the 

largest, followed by the distance between A and B, then the distance between 

E and the centroid of C-D, and �nally the distance between C and D. 

Actually, we can observe that data points C, D, and E likely form a cluster, while 

data points A and B appear to be individual points, despite their Euclidean 

distances being rela�vely smaller than those within the C, D, E cluster 

(par�cularly between D and E). A and B can be clustered together if the 

threshold is set high enough, although the cluster density will be lower 

compared to the C, D, and E clusters. 

To determine the closeness or similarity between two assets (or clusters) in the �nancial 

domain, we �rst need to obtain the correla�ons of the assets’ returns, analogous to the 

Euclidean distances in the previous example. Given N assets, each with a dura�on of T, we 

form an N ×T matrix R represen�ng these assets’ daily returns. A�er obtaining the 

covariance matrices, Σ, of our assets’ daily returns (N ×T) matrix, using the formula (with 

minus one in the denominator because it is a sample dataset, not the whole popula�on) 

  ,

 (1) 

we can calculate the corresponding correla�on matrix based on di�erent criteria. There are 

various methods to calculate correla�on coe�cients ρ based on covariance matrices, with 

the most common ones being Spearman, Pearson, Kendall, and their absolute versions. 

Consequently, we can transform the correla�on matrix into a distance matrix. Depending on 

the correla�on method used, the corresponding distance matrix transla�on might vary. For 

the common methods—Spearman, Pearson, and Kendall—the distance matrix D is 

 

 D = p0.5(1−ρ), (2) 

and for their absolute versions, the formula is 

 D = p(1−|ρ|). (3) 

Based on the obtained distance matrix represen�ng the distance between each asset, our 

algorithm can employ various criteria. Common methods to calculate distance or similarity 

include: 

1. Single Linkage – the distance between two clusters is the shortest distance between 

any elements in each cluster. 



 

2. Complete Linkage – the distance between two clusters is the longest distance between 

any elements in each cluster. 

3. Average Linkage – the distance between two clusters is the average distance between 

elements across clusters. 

4. Ward Linkage – the distance between two clusters is the increase in the squared error 

when two clusters are merged. 

These linkage methods are documented in the Python package Riskfolio-Lib2. For addi�onal 

details on the various linkage methods available in Riskfolio-Lib, please refer to Appendix A. 

• Quasi-Diagonaliza�on 

Following the organiza�on of our assets into a hierarchical structure, the next phase of our 

process involves applying a quasi-diagonaliza�on technique within our algorithm. Ini�ally, 

we sorted our assets into a tree-like arrangement using a speci�c distance metric to evaluate 

their similari�es. Now, we proceed to reorder the rows and columns of the asset covariance 

matrix based on the hierarchical structure obtained in Step 1 – HC. This reordering clusters 

more closely related assets and separates less related ones. Upon comple�on, the 

covariance matrix will be organized such that larger covariance values align along the 

diagonal, while smaller values are distributed around it. This resultant matrix, with o�-

diagonal elements closer to zero, is referred to as a quasi-diagonal covariance matrix. Figure 

2 shows a template for comparing the original and quasi-diagonal covariance matrices 

provided by Millea and Edalat (2022). 

In our analysis, we used a 1-year rolling window, advancing 1 month at a �me from 1990 to 

2023. Consequently, our quasi-diagonal matrices may di�er each �me. However, the �gure 

below provides a blueprint for the structure of these quasi-diagonal matrices, with larger 

covariance values nearer to the diagonal. 

 

 
2 h�ps://riskfolio-lib.readthedocs.io/en/latest/hcpor�olio.html 



 

Figure 2: Original correla�on distance matrix (le�) and a�er matrix seria�on or 

quasidiagonaliza�on (right) by Millea and Edalat (2022) 

• Recursive Bisec�on 

This subsec�on presents the �nal phase of weight distribu�on to the assets, leveraging the 

clustering performed in the preceding steps. The basic idea for recursive bisec�on is that we 

recursively calculate each cluster weight each �me we bisect our dendrogram un�l we reach 

each asset (i.e., each cluster, in this case, is the assets themselves) based on our sorted 

covariance matrix from Step 2 - Quasi-Diagonaliza�on. 

First, we detail and explain the en�re calcula�on process for Recursive Bisec�on: 

1. First, we set the weights of all assets wi to 1 (dummy variables). 

2. Second, beginning at the root, we apply the following weights to each cluster Cj, j = 

1,2, to calculate their vola�li�es, where CovCj being the covariance matrix for cluster j, 

where j = 1,23: 

diag(CovCj)−1 

 

 wCj 
= trace(diag(Cov )−1) (4) 

Cj 

This takes advantage of the principle that alloca�ons based on inverse variance are 

the most e�ec�ve when dealing with a diagonal covariance matrix. 

3. Third, for each cluster Cj, j = 1,2, we calculate their newly updated corresponding 

variance sigmai, where j = 1,2: 

T 
 σj = wCjCovCjwCj (5) 

4. Finally, we update the weights and mul�ply each cluster weight αj by each asset within 

it. Note that in this case, we only determine each cluster’s weight αj, j = 1,2: 

wi = αjwi, with  (6) α2 = 1−α1 (7) 

 
3 We cut the tree obtained from the �rst step into halves each �me, and the bisec�on rule is based on the 

number of assets. For instance, when we are at the root of the dendrogram tree, we cut the tree at its 

midpoint. So that the di�erences of the number of elements of each cluster each bisec�on �me is no bigger 

than one, with one being the remainder e�ect. 



 

We repeatedly perform Steps 2 to 4 un�l we reach each individual asset. It is important to 

note that wCj is the weight of each asset in cluster j, ignoring the covariance factor, while 

sigmaj considers the covariance factor. As a result, we �rst calculate each asset’s weight 

within each cluster, ignoring their interac�on factors, and then for each cluster, we update 

the cluster’s weights by considering these asset’s weights and the whole cluster’s covariance 

matrix (including o�-diagonal covariance values). To elucidate this subsec�on 

comprehensively, we provide an intui�ve example in Figure 3 below: 

Consider the �ve data points in Figure 1 as �ve �nancial assets. The dendrogram 

in Figure 1 is constructed based on their distance matrices, as detailed in 

subsec�on 1, rather than Euclidean distances. The en�re dendrogram tree is 

recursively bisected un�l each asset is isolated. Each bisec�on results in two 

clusters, with we applying certain func�ons (refer to equa�ons (4), (5), (6), and 

(7) for details) of each cluster’s covariance matrix to determine the weight 

assigned to each cluster. This process is repeated un�l every asset is individually 

considered. It is crucial to note that a�er we reach and calculate each asset, the 

sum of weights equals one, and this is proven by Step 4, where alpha1 +alpha2 

= 1. 

In Figure 3, the bisec�on process is clearly illustrated. We start by bisec�ng the 

top of the tree, crea�ng two clusters: cluster 1 (assets A and B) and cluster 2 

(assets C, D, and E). We then perform calcula�ons, as shown in equa�ons (4), 

(5), (6), and (7), to determine each cluster’s weight. For clarity, we denote the 

series of calcula�ons on each cluster’s covariance matrix as capital F (if a cluster 

contains only one asset, its covariance matrix is the asset’s variance). A�er 

comple�ng the �rst bisec�on, obtaining w1 and w2 in Figure 3, we proceed to 

the second cut, targe�ng assets A and B separately and repea�ng the process. 

Next, we move to the second cluster from the ini�al cut, divide it into 

subclusters CD and E, and repeat the procedure. Finally, we divide the previous 

subcluster into sub-subclusters C and D and apply the same opera�ons. A�er all 

bisec�ons, we obtain a column vector wT , containing the 

weights of all individual assets. It is crucial to ini�ally set the weights of all assets 

to 1 to enable all recursions to func�on. 



 

 

 w′1′ == wwA
B == FF((VarVar((AB)))) w2w=1 =wCDEwAB ==FF((CovCov((CDEAB)))) ww1′′ 

′′2==wCDwE ==FF((CovVar((CDE)))) 

w2 

wT  

Figure 3: Dendrogram for Recursive Bisec�on 

Note that Riskfolio-Lib extends the risk metrics from only covariance ini�ally to a variety of 

other powerful measures, such as Value at Risk (VaR), Condi�onal VaR (CVaR), Calmar Ra�o, 

etc. In other words,Ci can be VaR, CVaR, or Calmar Ra�o of each cluster. This further 

strengthens the performance power of the HRP model, with higher risk-adjusted measures 

in the majority of �mes (par�cularly during recent decades). However, If this is the case, 

equa�ons (4), (5), (6), and (7) require slight adjustments. These adjustments will be 

discussed in the following model – HERC, which o�ers the �exibility to switch risk metrics 

and other performance measures, a signi�cant advantage over HRP. 
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• Summariza�on 

We now summarize the core of the HRP model as follows: First, we perform HC to create an 

inverted tree-like graph, or Dendrogram, to group our assets. Using this Dendrogram, we 

reorder the covariance matrix to group similar assets closer together and less similar ones 

further apart, resul�ng in a matrix with larger values along the diagonal and smaller values 

towards the edges. Finally, we recursively bisect the Dendrogram and determine each 

cluster’s weight using the sorted covariance un�l we reach each individual asset. 

3.1.2. HERC 

Subsequent to Lopez de Prado (2016)’s work, in 2018, Ra�not (2018) introduced a novel 

algorithm in his paper, ”The Hierarchical Equal Risk Contribu�on Por�olio.” This algorithm, 

known as the HERC, combines and improves upon the machine learning techniques used in 

HCAA with the top-down recursive bisec�on approach characteris�c of HRP. The HERC 

algorithm comprises four main stages: 

1. HC – the same as the HRP model. 

2. Determining op�mal number of clusters – usually the default method is Gap sta�s�c. 

3. Hierarchical Recursive Bisec�on – the same as the HRP model except that for each 

�me it bisects the tree graph, the HERC model aligns with the clustering results 

obtained in Step 1, and stops when the number of clusters k reaches the op�mal 

number in Step 2. 

4. Naive Risk Parity (NRP) – this applies the NRP method for assets in each cluster and 

mul�plies NRP weights with cluster weights in which they reside. 

Due to the fact that Riskfolio-Lib has already enhanced the HRP model by addressing 

cri�cisms related to its exclusive reliance on the variance metric as the sole criterion for risk 

assessment, HERC model mainly improves the HRP model in the following two ways: 

1. Not Following the Dendrogram Structure – HRP deviates from the dendrogram 

structure, op�ng instead to bisect the tree according to the number of assets (i.e., the 

HRP method evenly cuts the tree each �me, not considering the e�ect of hierarchical 

clustering in the �rst step). Figure 4 provides an excellent example of the di�ering 

bisec�ons for these two models: 



 

 

Figure 4: Dendrogram Bisec�ons for HERC (blue le�) and HRP (red right) 

2. Iden�fying the Op�mal Number of Clusters – HRP approach does not need to 

determine the op�mal number of clusters k, but con�nually evenly bisects the tree 

un�l it reaches all of the individual elements in the tree. While it is convenient to skip 

the process of es�ma�ng the number of clusters, construc�ng such extensive trees 

slows down the algorithm signi�cantly when dealing with very large datasets. In 

addi�on to this, allowing the tree to fully develop based on our data also creates a risk 

of over��ng. This means that minor inaccuracies in the data can cause substan�al 

errors in es�ma�ng por�olio weights. 

The HERC method �xes these problems of HRP by following the dendrogram structure and 

dives into the tree un�l it reaches the op�mal number of clusters k derived from Step 2. 

Now, we only discuss the step(s) where the HERC model is signi�cantly di�erent from the 

HRP approach: 

• Determining op�mal number of clusters 

HERC diverges from the conven�onal HRP algorithm at this point. Ini�ally, the tree is fully 

developed to its maximum depth, a�er which it undergoes pruning to achieve the desired 

number of clusters. In this situa�on, we will apply the default method, which is Gap sta�s�c. 

For example, imagine you have data with k clusters – C1,C2,C3,.....,Ck. The sum of pairwise 

distances within a cluster, Dr, can be described as follows: 

 Dr = ∑ dij (8) 
i,j∈Cr 

    



 

where dij represents the Euclidean distance between two data points, i and j. From this, we 

compute the within-cluster sum of squares centered on the cluster means, denoted as Wk 

(cluster iner�a). 

k 
Dr 

 Wk = r∑=1 2 nr (9) 

where nr represents the count of data points within the rth cluster. The �nal step for Gap 

sta�s�c is to �nd the op�mal number of clusters k such that k maximizes the following 

equa�on: 

 Gapn  (10) 

where E∗ denotes the expected value according to a certain reference distribu�on 4. Note 

that we can select various methods to es�mate the op�mal number of clusters k, such as 

the Average Silou�e and Elbow methods. This can be achieved by inpu�ng the parameter k 

in the Riskfolio-Lib’s HCPor�olio.op�miza�on member func�on before directly applying our 

wanted approaches to determine the op�mal cluster number k. 

• Hierarchical Recursive Bisec�on 

Having found the required number of clusters, this step calculates weights for each �nally 

determined clusters. To illustrate this process more clearly, we refer back to Figure 3 for the 

5 assets we used as a perfect example. 

1. At the top of the tree, we have one big cluster and its weight is 1 (iden�cal to Step 1 

of Recursive Bisec�on in HRP). 

2. We now descend through the dendrogram structure and successively assign weights 

at each level of the tree. At each point, the tree are always bisected into two sub-

clusters, let’s say –C1 ={A,B} andC2 ={C,D,E} – in Figure 3. The respec�ve cluster 

weights, CWCj, where j = 1,2, are given by the following formulae: 

RCC1 

 CWC1 =  (11) 

RCC1 +RCC2 

 CWC2 = 1−CWC1 (12) 

 
4 The standard selec�on is a uniform distribu�on across the data’s range, presuming a structureless uniform 

distribu�on. For deeper research on the appropriate reference distribu�on, see Tibshirani et al. (2001). 



 

RCC1 and RCC2 represent the risk contribu�ons of clusters C1 and C2 respec�vely. To 

determine RCC1 and RCC2, we must �rst calculate the risk contribu�on RCi of each asset 

i within the clusters. Any tradi�onal risk measure can be used to compute RCi, with 

HERC currently suppor�ng the following primary measures: Variance, Standard 

Devia�on, Expected Shor�all (CVaR), and Condi�onal Drawdown at Risk (CDaR)5. The 

risk contribu�on RC for a cluster j is the sum of the risk contribu�ons of all individual 

assets within that cluster. For instance, referring to Figure 3 and assuming C1 = {A,B} 

and C2 = {C,D,E}, we get: 

 RCC1 = RC1 +RC2 (13) 

 RCC2 = RC3 +RC4 +RC5 (14) 

3. Recurse through the tree un�l all the clusters have been assigned weights. 

• Naive Risk Parity (NRP) 

The last step is to calculate the �nal asset weights. Con�nuing our previous example, let us 

calculate the weights of assets residing in C2, i.e., assets 3, 4, and 5. Please note that the 

asset weights in C1 follow the same approach. 

1. The �rst step is to calculate the naive risk parity weights,WNRP, which uses the 

inverserisk alloca�on to assign weights to assets in a cluster. 

1 

 WNRPi = 5 RCi 1 ,i ∈ {3,4,5} (15) 

∑
k=3 RCk 

2. Mul�ply the risk parity weights of assets with the weight of the cluster in which they 

reside. 

 W�nali =WNRPi ×CWC2, i ∈ {3,4,5} (16) 

In this way, the �nal weights are calculated for assets in all the other clusters. 

3.2. Improvements 

This subsec�on discusses the modi�ca�ons of HRP and HERC por�olio op�miza�on 

methods: HPCA in the linear case versus DTW in the nonlinear case. 

3.2.1. HPCA 

The HPCA conducts the tradi�onal PCA to each cluster we found in either an HRP or HERC 

situa�on previously. There are two main advantages of applying HPCA por�olio 

 
5 The Riskfolio-Lib Python package includes addi�onal op�ons. For more details, please refer to Footnote 2. 



 

op�miza�on, as shown by Avellaneda (2020); Serur and Avellaneda (2020). First of all, HPCA 

uses a parsimonious approach, meaning it does not rely on too many parameters. The user 

only needs to de�ne the number of clusters or eigenvectors, which simpli�es the model 

complexity. Second, they demonstrated that HPCA performs well across various markets (US, 

Europe, China, and Emerging Markets), indica�ng its robustness and adaptability. 

Recognizing this, it is a good idea to combine the PCA model with HC algorithms. First of all, 

it is important for us to have a quick review of PCA. 

• PCA Revisited 

PCA is a method used to reduce the dimensionality of data through linear transforma�ons, 

making it valuable for exploratory data analysis, visualiza�on, and data preprocessing. This 

technique reorients the original data into a new coordinate system where the axes (principal 

components) that exhibit the greatest variance are clearly dis�nguishable. Assuming our 

por�olio has a total of N individual assets, the mathema�cal model for implemen�ng PCA 

for asset alloca�ons is the Singular Value Decomposi�on (SVD) of the correla�on matrix of 

the assets’ daily returns, C: 

 C =UDVT (17) 

where U, D, and V all being N ×N matrices, D a diagonal matrix in addi�on to the square 

matrix, columns of U eigenvectors, and diagonal entries of D eigenvalues. Note that these 

matrices are in decreasing order, meaning the largest eignvalue is always the �rst diagonal 

entry in D, and the �rst column of U corresponds to the largest eignvalue, the second column 

of U corresponds to the second largest eignvalue, and so on. When the covariance matrix is 

posi�ve de�nite 6, V =U, so we obtain: 

 C =UDUT (18) 

The eigenvectors as columns obtained in U represent uncorrelated features of the original 

dataset, which could be correla�on (or covariance) matrices in our case, and the eigenvalues 

as diagonal entries in D are the amount of informa�on retained by each feature. 

Although we do not apply the �nal step of PCA in our asset alloca�ons, this step involves 

transforming the original dataset by mul�plying the matrix of assets’ daily returns R by the 

sub-matrix ofU containing the �rst k eigenvectorsU[:,1:k] and naming the result of this matrix 

mul�plica�on as R∗k: 

 R∗k = R·U[:,1:k] (19) 

 
6 There are many de�ni�ons for posi�ve semide�nite/de�nite matrix, but the most common one is: xTSx ≥ 0 

for any nonzero n×1 vector x, with = being the de�ni�on of posi�ve semide�nite matrix. 



 

• Correla�on Update 

A�er reviewing the concept of PCA, now it is the �me to adapt to the HPCA scenario. As we 

indicated before, all of the improvement of HPCA (and DTW as well) is to update the 

covariance matrices, or more speci�cally, the correla�on matrices. We �rst need to obtain 

our �rst eigenpor�olio F1 (i.e., the eigenpor�olio 7  linked to the leading principal 

component) for each cluster j a�er �nishing the hierarchical clustering process in either HRP 

or HERC case. 
j 

The formula for the �rst eigenpor�olio for each cluster j, F1 , is: 

Nj 
 j 1 j j 

 F1 = q λ1j i∑=1(v1,i ◦Ri ) (20) 

j 
where λ1 is the �rst (i.e., (1,1)-st, containing the most signi�cant informa�on of assets’ 

correla�ons) entry of the diagonal matrix D from the SVD of the correla�on matrix of asset 

daily returns in cluster j,Cj, v1
j
,i (for i=1,2,...,Nj) is the i-th element of the �rst eigenvector 

corresponding to λ1, ◦ denotes the element-wise mul�plica�on (Hadamard product), and 

Ri
j is the matrix of the asset i’s daily returns in cluster j. Note that  e�ec�vely 

collapses the N ×T matrix v1
j
,i ◦Ri

j into a T-element array by summing across the Nj �ckers in 

cluster j for each �me period t = 1,2,...,T. To be�er understand how equa�on (20) works, it 

is be�er to provide an example: 

Let us assume we have the following daily returns R(2,3) for the two assets over three 

�me periods: 

 R  (21) 

 (2,3) (2,3), we need 

To calculate the corresponding �rst eigenpor�olio F1 of matrix R to obtain the 

correla�on matrix of R(2,3) using equa�on (1) and either Spearman, Pearson, or 

Kendall method. Further, let us assume the correla�on matrix of R(2,3), C(2,3) is 

as follows: 

 
7 ith eigenpor�olio is the por�olio created by the combina�ons of assets capturing the ith signi�cant co- 

movement in their returns, adjus�ng the eigenvectors of the covariance matrix to di�erent scales. 



 

 C  (22) 

 (2,3) (2,3) 
And we can then obtain the �rst eigenvalue v1 and eigenvalue λ1

 correspondingly: 

 , v  (23) 

Then, we compute the element-wise mul�plica�on and summa�on v1
j ◦Rj: 

Nj 
 h i 

(24) 
i=1 

where R  and R , and v  
(2,3) 

 0.71 for i = 1,2. Arriving at this step, we can �nally compute F1 : 

F  
(2,3) 

 So, the F1 that has been �nally calculated is: 

 F  (26) 

which is a T by 1 column vector, where T in our case is 3. 
j 

A�er obtaining the principal eigenpor�olio F1 , we perform an ordinary linear regression of 
j j each asset i’s daily 

returns in its corresponding cluster j, Ri , on F1 , ignoring the intercept term: 

 j j j j 
 Ri = βi F1 +εi , i = 1,2,...,N (27) 

 j j 
where βi and εi are the coe�cient and the residuals in this linear regression. Assuming two 

assets i and k, and the clusters j1 and j2 each of them belongs to, the corresponding �nal 

(i,k)-th entry of the HPCA correla�on matrix R˜ik is de�ned by: 

1. If j1 = j2, R˜ik = Rik, 

2. If j1 ̸= j2, R˜ik = βi
j1βk

j2Corr . 



 

in which Corr   is the correla�on coe�cient between the �rst eigenpor�olio of 

cluster j , and that of cluster j2, F1j2. In other words, we only update the correla�on 

entries where the two assets it corresponds to are from di�erent clusters. When the two 

assets are from the same cluster, we just le� what the entry is – the entry obtained by the 

previously speci�ed correla�on method transforming the covariance matrix to the 

correla�on matrix 8. 

Finally, it’s crucial to use a consistent method for calcula�ng correla�on coe�cients. If we 

ini�ally used the Pearson method, we must use it again to update the correla�on matrix 

whenever two assets are in di�erent clusters. 

3.2.2. DTW 

Combining DTW with HC op�miza�on is the shining part of this research. DTW is a powerful 

algorithmic tool designed to �nd an op�mal alignment between two given temporal 

sequences in a nonlinear case. In other words, DTW �nds the minimum cost of alignment of 

a pair of �me series. It is adept at measuring the similarity between sequences that may 

vary in speed or dura�on due to phase shi�s or di�erent opera�on rates. In �nance, where 

market data are o�en non-linear and out of phase, DTW becomes instrumental in aligning 

�me series data for be�er comparison and analysis. 

DTW accomplishes this by ’warping’ the �me dimension of sequences to enable a point-

bypoint comparison, essen�ally stretching or compressing the sequences as needed to 

iden�fy pa�erns that would be missed by conven�onal linear analysis. This technique is 

invaluable in comparing �nancial �me series data such as stock prices, trading volumes, or 

economic indicators that do not align perfectly over �me due to various market condi�ons 

or external events a�ec�ng the assets di�erently. The essence of DTW is that is a dynamic 

programming approach upda�ng the corresponding distance of two �me series at each �me 

step by its previous value adding the minimum adjustment to the current �me step. 

The formula of DTW in two-�me series X = (x1,x2,...,xn) and Y = (y1,y2,...,ym) is summarized as 

follows 9:  

 DTW d(xi,yj)2 (28) 

where π = [π0,...,πK] is a path sa�sfying the following proper�es: 

 
8 The HPCA assump�on is that for two assets i and k, corr(εi,εk)= 0 when cluster(i)̸= cluster(k). While we 

did not visualize the plo�ng of residuals in this situa�on, the similar (in fact, slightly be�er) performance of 
HPCA version of HRP model compared with the tradi�onal HRP model should convince the legi�macy of this 
assump�on. 

9 h�ps://tslearn.readthedocs.io/en/stable/user_guide/dtw.html 



 

1. it is a list of index pairs πk = (ik, jk) with 0 ≤ ik < n and 0 ≤ jk < m 

2. π0 = (0,0) and πK = (n−1,m−1) 

3. for all k > 0, πk = (ik, jk) is related to πk−1 = (ik−1, jk−1) as follows: 

• ik−1 ≤ ik ≤ ik−1 +1 

• jk−1 ≤ jk ≤ jk−1 +1 

In this context, a path represents the synchroniza�on of �me series data in a way that the 

Euclidean distance between the corresponding (that is, resampled) data points of the �me 

series is as small as possible. In our situa�on, we calculated the DTW distance matrix based 

on the formula above, rescaled it from a range of 0 to 1, converted it to the correla�on and 

thus the covariance matrices, and performed the Hierarchical Clustering model (i.e., HRP 

and HERC) based on this updated covariance matrix input. Feel free to refer to Appendix B 

for the detailed algorithm implementa�on for calcula�ng the DTW distance matrix. 

While the above formula seems complicated to understand and calculate, it has the 

following equivalent formula equivalently: 

 DTW[i, j] = Dist(i, j)+min(DTW[i−1, j],DTW[i, j−1],DTW[i−1, j−1]) (29) 

with 

DTW[0,0] = 0, DTW[0,i] = DTW[j,0] = ∞ for i = 1,2,...,n and j = 1,2,...,m (30) 

A quick example is the con�nued example from equa�on (21). When we want to calculate 

the DTW distance, DTW[1,1] for r11 and r21, we �rst calculate the distance between r11 and 

r21: 

Dist[1,1] = (X[0]−Y[0])2 = (0.01−0.02)2 = 0.0001 Then we 

calculate the corresponding DTW[1,1] using equa�ons (29) and (30): 

(31) 

DTW[1,1] = Dist[1,1]+min(DTW[0,1],DTW[1,0],DTW[0,0]) (32) 

= 0.0001+min(∞,∞,0) = 0.0001 (33) 

When it comes to APD, DTW is par�cularly useful for synchronizing disparate �nancial �me 

series data. This allows investors to recognize leading and lagging indicators across di�erent 

market segments. It also helps iden�fy temporal rela�onships and correla�ons that are not 

immediately apparent, enabling por�olio managers to an�cipate and adjust to market 

dynamics proac�vely. 

Moreover, DTW can enhance risk management by detec�ng when assets or strategies begin 

to deviate from their historical pa�erns, signaling poten�al shi�s in market trends or 

emerging risks. It can also contribute to be�er tailoring of the investment strategy to speci�c 

market regimes by recognizing the periods where par�cular strategies outperform others. 



 

By integra�ng DTW into APD strategies, investment models can adapt to the market’s 

rhythmic �uctua�ons and iden�fy opportuni�es that a sta�c model might overlook. This 

dynamic approach allows for a more responsive por�olio that can adjust in near-real-�me 

to changing market condi�ons, mi�ga�ng risks and capturing growth more e�ec�vely, which 

is crucial for the construc�on of a robust and adaptable investment por�olio. 

4. Implementa�ons 

4.1. Data Collec�ons 

The assets of our por�olios include a mixture of Indexes and ETFs. We carefully selected our 

datasets for the following reasons: 

1. Act as dependable indicators for the most signi�cant classes of assets and their 

subsets. 

2. Be easily accessible for widespread use. 

3. Exhibit a high degree of liquidity. 

4. Provide data points on a daily basis. 

5. Include a wide array of market environments, ideally da�ng back to the early 1990s. 

6. Possess advantageous sta�s�cal quali�es that facilitate easier modeling. In this regard, 

�nancial indices are generally preferable due to their more desirable sta�s�cal 

a�ributes when compared to the �me series of individual stocks or bonds. 

Based on these criteria, we �nally selected 14 ideal Indexes and ETFs from Bloomberg for 

the purpose of research, as shown in Table 1: 

Table 1: Daily Data Sets 

Name Descrip�on 

BCOMTR Bloomberg Commodity Index Total Return 

LBUSTRUU Bloomberg Barclays US Aggregate Bond Index 

RU20INTR Russell 2000 Total Return 

S5COND S&P 500 Consumer Discre�onary Index 

S5CONS S&P 500 Consumer Staples Index 

S5ENRS S&P 500 Energy Index 

S5FINL S&P 500 Financials Sector GICS Level 1 Index 

S5HLTH S&P 500 Health Care Index 

S5INDU S&P 500 Industrials Index 

S5INFT S&P 500 Informa�on Technology Index 



 

S5MATR S&P 500 Materials Index 

S5TELS S&P 500 Communica�on Services Index 

S5UTIL S&P 500 U�li�es Index 

SPXT Proshares S&P 500 EX Technology ETF 

In addi�on to the daily returns dataset, we also considered the importance of interest rates 

in construc�ng our por�olio. A�er careful selec�on, we chose the monthly data on the ”1-

Year Treasury Constant Maturity Rate” because the rolling window is approximately 252 

trading days (i.e., 1-year data), and we moved this window forward by 1 month. This data is 

available from Federal Reserve Economic Data10. 

4.2. Backtes�ng 

We u�lized a rolling window approach with the previous year’s daily returns data to es�mate 

por�olio weights, advancing by one month at a �me from January 1st, 1990, to December 

31st, 2022. This method involved using the past year’s data to generate covariance, 

correla�on, and distance matrices for the modi�ed HC por�olio diversi�ca�on method. Our 

por�olio, containing the research targets, was updated monthly. Besides the standard 

cumula�ve and daily returns performance metrics, we evaluated a range of addi�onal 

criteria: Drawdowns, Maximum Drawdowns (Max DD), Annualized Returns, Annualized 

Excess Returns, Annualized Vola�li�es, Sharpe ra�os, Sor�no ra�os, Calmar ra�os, Historical 

VaR, and Historical CVaR. 

For implementa�on, we directly used Riskfolio-Lib and tslearn for HC and DTW cases. For 
the HPCA model, we manually created a class named HPCA to generate updated 
correla�on and covariance matrices, following the guidelines in Sec�on 3.2.1. to obtain the 
�nal HPCA version. We excluded transac�on fees in our monthly rebalancing to avoid 
introducing noise into our analysis. 

5. Results 

The results of the modi�ed HC model are promising: in most cases, especially in recent 

decades, our proposed por�olio outperforms the tradi�onal MV por�olio. A�er 

experimen�ng with various correla�on methods, risk metrics, and linkage methods, we 

found that the absolute Kendall codependence method for the tradi�onal HC model, 

Drawdowns for the risk metrics, and DBHT clustering for the linkage method 11 yielded the 

best results overall. Speci�cally, the op�mal risk metrics for each model are: the Calmar Ra�o 

for the classical HC model (i.e., HRP and HERC) and its DTW version (for stable performance), 

Average Drawdown of compounded cumula�ve returns for the HPCA version of the HRP 

method, and Rela�vis�c Drawdown at Risk (RLDaR) for the DTW case (for high-return 

 
10 h�ps://fred.stlouisfed.org/ 
11 The DBHT linkage method only fails with the HPCA version of the HRP case. In this situa�on, the complete 

linkage method performs the best. 



 

performance) 12 . These superior performances are due to the HC models’ inherent 

advantages of more diversi�ed investments and versa�le risk metrics. 

To be�er interpret our results, we divide our discussion into two subsec�ons: Por�olio 

Returns and Other Performance Metrics. The �rst subsec�on includes three sub-

subsec�ons: Cumula�ve Returns Analysis, Daily Returns Analysis, and Drawdown Analysis. 

5.1. Por�olio Returns 

5.1.1. Cumula�ve Returns Analysis 

Figure 5 elucidates the temporal progression of cumula�ve returns, delinea�ng the ascent 

of investment values from the early stages of the 1990s to the peak of 2024. The graph 

serves as a synop�c display where each trajectory ar�culates the empirical yield of dis�nct 

investment strategies, against the “Base Por�olio” which anchors the norma�ve benchmark. 

 

Figure 5: Cumula�ve Returns of Stability-Focused Por�olio Strategies 

In this analy�cal framework, “Stable Solu�ons” carve out a path marked by decidedly less 

vola�lity when juxtaposed with tradi�onal MV-op�mized por�olios. This less tumultuous 

trajectory embodies a calculated approach to growth, re�ec�ve of an overarching strategic 

resilience to macroeconomic shi�s and a keen naviga�on through the undercurrents of 

market ine�ciencies. When set against the MV baseline, this discourse ampli�es the intrinsic 

 
12 High-return performance requires more running �me, occasionally fails to �nd an op�mal solu�on, and 

may incur warnings of inaccurate es�mates 



 

ap�tude of the APD framework for long-term capital accrual, underpinning its robustness 

and func�onal e�cacy. 

Moreover, the juxtaposi�on of di�erent solu�on sets within the “Stable Solu�ons” suite, 

such as the HRP and HERC strategies, manifests a tempered vola�lity when contrasted with 

the DTW-enhanced equivalents. These strategies are an�cipated to mirror market 

vicissitudes, their adap�ve responsiveness illuminated during pivotal periods such as the 

turn of the millennium, the a�ermath of the 2008 �nancial turmoil, and during the COVID-

19 pandemic. In comparison with the “Base Por�olio,” the APD strategies have exhibited 

adept maneuvering through economic tumult, marked by pronounced devalua�ons swi�ly 

followed by rebounds, indica�ve of e�cacious capital preserva�on and risk management 

protocols. 

The HERC por�olio strategy, par�cularly post-2024, emerges as a paragon of resilience and 

strategic acuity, encapsula�ng the tenets of APD’s investment philosophy. This por�olio, in 

tandem with its DTW-enhanced counterpart, has shown commendable economic recovery 

post-crisis. It maintained stability amidst the pandemic-induced �nancial oscilla�ons, 

underscoring the por�olio’s capacity for withstanding excessive market vola�lity. 

Figure 6’s depic�on of the ”High-Return Solu�ons” suggests a trajectory of marked 

ascensions, embodying the venturesome spirit intrinsic to such strategies. The aggressive 

inclines, especially noted in the HERC Por�olio, signal a more ambi�ous capital growth 

approach, poten�ally indica�ve of dynamic asset alloca�on strategies, which might include 

leveraging, deriva�ves trading, or high-frequency trading—prac�ces generally associated 

with higher risk and reward prospects. 

 



 

Figure 6: Cumula�ve Returns of High-Reward Investment Strategies 

Across both ”Stable” and ”High-Return” solu�on spectrums, the APD strategies advocate for 

a balanced amalgama�on of mi�gated risk growth and potent capital enhancement. The 

strategic deployment of APD principles promises a controlled and progressive investment 

experience, o�ering solace to conserva�ve but growth-aspiring investors. 

5.1.2. Daily Returns Analysis 

In our preceding analysis, we evaluated the cumula�ve returns over a given period and 

concluded that APD strategies exhibit stability in long-term growth, demonstra�ng resilience 

during catastrophic �nancial events such as economic crises with less impact and quicker 

recovery capabili�es. Building upon this founda�on, Figure 7 o�ers an interpre�ve view of 

the granular �uctua�ons in returns within the ”Stable Solu�ons,” dissec�ng the inherent 

vola�lity and risk dynamics characteris�c of each investment strategy under the umbrella of 

stable approaches. 

The data depicted across the en�re temporal scope indicates that APD por�olios, which 

include the ”HRP-DTW Por�olio,” ”HERC-DTW Por�olio,” and ”HRP-HPCA Por�olio,” have 

maintained a strict dispersion range of returns. This denotes the applica�on of �nelytuned 

mi�ga�on strategies against the market’s frequently unpredictable �uctua�ons, leveraging 

hierarchical clustering, principal component analysis, and temporal alignment algorithms to 

ensure a disciplined dispersion range, thereby dampening stochas�c market noise. In 

par�cular, the temporal alignment strategy facilitated by the DTW method has further 

insulated these por�olios from sporadic and anomalous market movements that typically 

induce greater vola�lity in daily returns. In contrast, the baseline ”Base Por�olio” (i.e., the 

MV method of weights’ determina�on) exhibits a broader vola�lity of returns with more 

pronounced peaks and troughs, indica�ng a greater sensi�vity to transient market 

anomalies. 



 

 

Figure 7: Por�olio Daily Return of Stable-Return Investment Strategies 

Figure 8’s ”High-Return Solu�ons” display a wider range of daily returns, in line with their 

risk-recep�ve stance aimed at achieving greater �nancial gains. APD strategies consistently 

provide a stable and stringent range of return dispersion. Such precision in risk control, 

especially within the ”Stable Solu�ons,” contrasts starkly with the broader variances seen in 

”High-Return Solu�ons,” indica�ng a greater tolerance for market upheaval in pursuit of 

superior �nancial outcomes. 

Together, these analyses o�er a nuanced understanding of the risk-return pro�les inherent 

to each investment strategy. They demonstrate that APD strategies furnish a more 

me�culous market naviga�on, delivering a level of controlled performance not consistently 

achievable by tradi�onal MV op�miza�on. The APD framework, with its strategic emphasis 

on risk reduc�on and capital enhancement, assures a more predictable and less vola�le 

journey towards wealth accumula�on, appealing to investors across the spectrum of risk 

appe�tes. 



 

 

Figure 8: Por�olio Daily Return of High-Return Investment Strategies 

5.1.3. Drawdown Analysis 

Figure 9 provides a visual representa�on of por�olio performance under stress, showing the 

extent of losses each strategy sustained from peak to trough. The chart speci�cally illustrates 

the ”stable solu�on” and its ability to reduce losses during market downturns, 

demonstra�ng the e�ec�veness of the APD strategy. 

The vola�lity curve reveals the maximum depth of decline experienced by each strategy, 

indica�ng the retracement from the peak. The ”Stable Solu�on” includes strategies such as 

the ”HRP Por�olio” and the ”HERC Por�olio”, which have signi�cantly smaller drawdowns 

than their ”Basic Por�olio” and DTW-enhanced counterparts. This demonstrates the APD 

strategy’s robustness in terms of capital preserva�on and its ability to maintain por�olio 

valua�ons during vola�le market condi�ons. 

The “HRP-DTW” and “HERC-DTW” strategies show a slight increase in drawdowns, 

sugges�ng that while DTW integra�on helps with �ming and poten�ally iden�fying market 

changes, it may not always imply sensi�vity to extreme market moves decline. However, the 

”HRP-HPCA por�olio” integra�ng hierarchical principal component analysis o�en exhibits 

superior resilience, highligh�ng the u�lity of this approach in dis�lling and responding to 



 

 

Figure 9: Por�olio Drawdowns of Stable-Return Investment Strategies 

 

Figure 10: Por�olio Drawdowns of High-Return Investment Strategies core 

market drivers while mi�ga�ng the impact of peripheral �uctua�ons. 



 

In Figure 10, the retracement value �uctua�on under high returns is similar to that under 

steady state, except that due to the in�uence of DTW, the retracement elas�city of HRP 

increases. 

By comparing the drawdowns of these strategies to a tradi�onal ”underlying por�olio,” 

APD’s ability to respond to and recover from �nancial turbulence is signi�cantly enhanced. 

This a�ribute is invaluable to investors with risk-averse tendencies and gives us con�dence 

that the strategic deployment of APD principles can lead to a more controlled, less chao�c 

inves�ng experience. 

5.2. Other Performance Metrics 

In the compara�ve assessment of por�olio strategies under the ambit of APD and tradi�onal 

MV op�miza�on, the key performance metrics reveal a dis�nct demarca�on in risk 

propensity and endurance. As Table 2, the APD strategies, embodied by the likes of ”HRP-

DTW,” ”HRP-HPCA,” and ”HERC,” demonstrate a notable reduc�on in Max DD when 

juxtaposed against the baseline MV strategy, the ”Base Por�olio.” This reduced Max DD 

underscores the APD strategies’ enhanced resilience to market downturns, thereby 

endorsing their e�cacy in mi�ga�ng the severity of poten�al losses. 

Table 2: Stable-Return Solu�ons Metrics 

 MV HRP-DTW HERC-DTW HRP-HPCA HRP HERC 

Max DD −0.45 −0.25 −0.39 −0.22 −0.25 −0.39 

RET 0.01 0.02 0.02 0.02 0.02 0.03 

SD 0.12 0.09 0.13 0.09 0.09 0.14 

Sharpe 0.05 0.25 0.15 0.23 0.24 0.20 

Sor�no 0.08 0.40 0.23 0.36 0.37 0.32 

Calmar 0.13 0.29 0.18 0.32 0.29 0.21 

VaR (5%) −0.01 −0.01 −0.01 −0.01 −0.01 −0.01 

VaR (1%) −0.02 −0.02 −0.02 −0.02 −0.02 −0.03 

CVaR (5%) −0.02 −0.01 −0.02 −0.01 −0.01 −0.02 

CVaR (1%) −0.03 −0.02 −0.04 −0.02 −0.02 −0.04 

The Sharpe and Sor�no ra�os, quintessen�al gauges of risk-adjusted performance, show a 

marked improvement for APD strategies, thereby substan�a�ng their superiority in 

delivering higher returns per unit of total and nega�ve risk, respec�vely. Such improvement 

in risk-adjusted returns is a testament to the APD’s sophis�cated risk management and 

op�miza�on processes that re�ne the investment landscape by taming vola�lity and 

tempering drawdowns. 



 

The Calmar ra�o, which marries the annualized rate of return to the maximum drawdown, 

illuminates the prudence of the APD strategies. Elevated Calmar ra�os in the context of 

”Stable Solu�ons” such as ”HRP” and ”HRP-HPCA” por�olios highlight their pro�ciency in 

securing commendable returns despite facing adverse market movements. 

VaR and CVaR further punctuate the risk narra�ve, quan�fying the prospec�ve loss within a 

de�ned con�dence level. APD strategies exhibit lower VaR and CVaR �gures, indica�ve of a 

systema�c approach to risk containment, where the poten�al for tail-end losses is prudently 

restrained. 

For the ”High-Return Solu�ons” within the realm of APD, the performance metrics delineate 

a compelling case for their risk-reward pro�le when contrasted against the MV op�miza�on. 

The metrics, as Table 3 shows, unfold a narra�ve of deliberate risk engagement to harness 

superior gains. Max DD for these high-return por�olios indicates a strategic acceptance of 

Table 3: High-Return Solu�ons Metrics 

 MV HRP-DTW HERC-DTW HRP-HPCA HRP HERC 

Max DD −0.45 −0.23 −0.39 −0.22 −0.25 −0.39 

RET 0.01 0.03 0.02 0.02 0.02 0.03 

SD 0.12 0.10 0.13 0.09 0.09 0.14 

Sharpe 0.05 0.31 0.16 0.23 0.24 0.20 

Sor�no 0.08 0.49 0.24 0.36 0.37 0.32 

Calmar 0.13 0.35 0.18 0.32 0.29 0.21 

VaR (5%) −0.01 −0.01 −0.01 −0.01 −0.01 −0.01 

VaR (1%) −0.02 −0.02 −0.02 −0.02 −0.02 −0.03 

CVaR (5%) −0.02 −0.02 −0.02 −0.01 −0.01 −0.02 

CVaR (1%) −0.03 −0.03 −0.04 −0.02 −0.02 −0.04 

deeper troughs in exchange for higher returns, as evidenced by the escalated return (RET) 

�gures. The HRP-DTW strategy, for instance, with a Max DD of -0.233964, demonstrates a 

signi�cant reduc�on in adverse excursions compared to the baseline MV, highligh�ng the 

nuanced risk management of APD strategies while seeking ampli�ed returns. 

The Sharpe and Sor�no ra�os for these high-return strategies, such as HRP-DTW with a 

Sharpe ra�o of 0.312291 and a Sor�no ra�o of 0.388919, suggest that the addi�onal risk 

incurred is being adequately rewarded by the excess returns over the risk-free rate. These 

enhanced ra�os signify that the strategies not only navigate the markets more pro�ciently 

but also u�lize risk in a manner that propor�onately increases the poten�al for returns. 



 

The Calmar ra�os of these por�olios, par�cularly for HRP-DTW at 0.346863, rea�rm the 

APD strategies’ strength in sustaining growth over long periods despite market setbacks, 

providing a clear illustra�on of sustained performance against the backdrop of the deepest 

drawdowns experienced. 

Furthermore, the VaR and CVaR metrics reinforce the risk posture of these strategies. Lower 

VaR and CVaR values for HRP-DTW, at -0.009365 and -0.015305 respec�vely, compared to 

the baseline MV, exhibit a strategic risk containment where the likelihood and mean of 

poten�al losses are kept within manageable bounds despite the aggressive pursuit of higher 

returns. 

The high-return APD strategies exemplify a bolder, yet calculated approach to por�olio 

management, where heightened returns are pursued without overlooking the implica�ons 

of risk. These strategies advocate for an investment ethos where the acceptance of larger 

�uctua�ons is integral to achieving outsized �nancial outcomes, aligning with the aspira�ons 

of investors who possess a more robust appe�te for risk in their pursuit of wealth 

maximiza�on. 

In the interplay of APD and MV op�miza�ons, it becomes apparent that the former o�ers a 

more robust pla�orm for investors, characterized by lower vola�lity and drawdowns without 

signi�cantly compromising on return poten�al. These metrics coalesce to portray a holis�c 

view of the investment strategies, where APD not only transcends the tradi�onal 

frameworks in terms of return metrics but also provides a more nuanced approach to risk 

management, a�rming its suitability for investors with varying risk appe�tes and investment 

horizons. 

6. Conclusions 

This study’s comprehensive analysis of APD strategies represents a signi�cant advancement 

in por�olio op�miza�on. By integra�ng HPCA and DTW with HC por�olio diversi�ca�on, our 

models surpass the tradi�onal MV op�miza�on approach. Empirical inves�ga�on and 

quan�ta�ve metrics reveal that APD strategies signi�cantly enhance por�olio robustness, 

reduce vola�lity, and mi�gate risk while delivering compe��ve returns. This high 

performance is a�ributed to two main factors: (1) more diverse weight alloca�on and (2) 

mul�ple risk minimiza�on methods beyond just vola�lity. 

For further implica�on, the �ndings of this paper advocate for the adop�on of APD strategies 

by investors who priori�ze both capital apprecia�on and prudent risk management. APD 

strategies are adaptable to various investor pro�les, from risk-averse individuals to those 

seeking aggressive growth. The integra�on of advanced sta�s�cal models within APD 

establishes it as a formidable approach in modern �nance, o�ering a structured yet �exible 

framework for por�olio construc�on that aligns with today’s complex market dynamics. 



 

In conclusion, as the �nancial industry evolves, APD principles provide a solid founda�on for 

naviga�ng the mul�faceted investment environment. Investors and por�olio managers are 

encouraged to consider APD as a means to achieve a more nuanced, informed, and dynamic 

por�olio management process, capable of responding to the unpredictable nature of global 

�nancial markets and the ever-changing investment horizon. 

7. Future Improvements 

As we look ahead, the con�nuous re�nement of APD strategies remains pivotal in adap�ng 

to the evolving dynamics of �nancial markets. The promising results obtained thus far serve 

as a founda�on upon which future research and prac�cal enhancements can be constructed. 

To sustain the momentum of progress and address the challenges uncovered during the 

analysis, the following sugges�ons for future research and prac�cal implica�ons are 

proposed: 

1. Data Enrichment – Incorpora�ng a broader spectrum of data, including alterna�ve and 

unstructured data sources (such as macroeconomic indicators, sen�ment analysis, 

and ESG factors), could provide deeper insights into asset behavior and market 

dynamics. 

2. Algorithmic Advancements – Exploring cu�ng-edge machine learning algorithms and 

ar��cial intelligence techniques could improve the predic�ve accuracy of the models. 

This could involve the use of reinforcement learning for dynamic strategy adjustments 

and neural networks for pa�ern recogni�on within �nancial �me series. 

3. Model Hybridiza�on – Combining the strengths of di�erent models may yield a more 

robust framework. For instance, integra�ng DTW with machine learning classi�ers can 

enhance the detec�on of regime shi�s and asset class behaviors, leading to more 

responsive por�olio adjustments. 

4. Por�olio Customiza�on – Tailoring APD strategies to di�erent market condi�ons and 

investor preferences can enhance their applicability. Customizing strategies for various 

market environments and risk appe�tes can make them more versa�le and e�ec�ve. 

5. Performance Benchmarking – Establishing comprehensive benchmarks to evaluate 

APD strategies against other advanced por�olio op�miza�on techniques can provide 

clearer insights into their rela�ve performance and areas for improvement. 

The roadmap for future improvements must be navigated with a commitment to rigorous 

research, innova�ve thinking, and adherence to sound investment principles. As the 

�nancial landscape becomes increasingly complex, the APD framework’s ability to evolve 

and incorporate new methodologies will be cri�cal to maintaining its relevance and e�cacy 

in por�olio management. Despite these sugges�ons, our research signi�cantly contributes 

to the evolving academic �eld. Speci�cally, our research has shown the pro�tability of 

combining DTW with the HC model to outperform the tradi�onal HC method under various 



 

por�olio performance metrics. In terms of prac�cal applica�on, our strategies be�er mimic 

the real world by incorpora�ng �uctua�ng interest rates into our asset alloca�ons. 

Furthermore, our approaches and results are legi�mate due to the proofs of these models 

separately by previous researchers and the bene�cial proper�es13 of the research targets we 

selected for tes�ng our strategies’ performance. 

Appendix A 

• Single Linkage (SL) 

Single Linkage (SL) is a method of Hierarchical Clustering. Star�ng with a matrix that 

measures the distances, this approach ini�ally gives each object its dis�nct cluster. In 

subsequent steps, it consistently combines the two closest clusters. This process con�nues 

un�l all objects are grouped into a single cluster. Throughout this process, the measure used 

to determine the distance between two clusters dA,B is updated to re�ect the smallest 

distance between any two elements in each cluster. 

 dA,B = min D(a,b) (34) 
a∈A,b∈B 

• Complete Linkage (CL) 

Complete Linkage (CL) is a variant of SL, with the distance between two clusters dA,B is the 

largest distance between any two elements in each cluster: 

 dA,B = max D(a,b) (35) 
a∈A,b∈B 

• Median Linkage (ML) 

Median Linkage (ML) is another variant of SL, with the distance between two clusters dA,B is 

the median distance between any two elements in each cluster: 

 dA,B = median D(a,b) (36) 
a∈A,b∈B 

• Average Linkage (AL) 

 
13 The assets in our por�olio have a long life, are highly conver�ble, and serve as reliable measures or 

benchmarks for the main categories of investments (such as stocks, bonds, commodi�es, etc.) and their more 

speci�c divisions. 



 

Average Linkage (AL) extends SL, with the distance between two clusters dA,B is the mean 

distance between any two elements in each cluster: 

 dA,B = mean D(a,b) (37) 
a∈A,b∈B 

AL has another name: UPGMA (Unweighted Pair Group Method with Arithme�c Mean). The 

UPGMA algorithm generates a rooted tree, also known as a dendrogram, which visualizes 

the rela�onships delineated in a pairwise similarity matrix or a dissimilarity matrix. With 

each itera�on, it merges the two closest clusters into a larger cluster. 

Thus, the distance between any two clusters A and B, d(A∪B),X, which have cardinali�es (i.e., 

number of elements in each cluster) |A| and |B| respec�vely, is computed as the mean of all 

distances d(x,y) between the object pairs x in A and y in B, thereby establishing the average 

distance between the members of each cluster. Put another way, during each step of 

clustering, the new distance that is determined between the merged clusters A∪B and 

another cluster X is calculated using a weighted average of the distances dA,X and dB,X: 

|A|·dA,X +|B|·dB,X 

 d(A∪B),X ,y) =  (38) 

 A B x∈Ay∈ |A|+|B| 

• Weighted Linkage (WL) 

Weighted Linkage (WL) is a varia�on of AL, with the distance between two clusters is the 

weighted average distance (i.e., Weighted Pair Group Method with Arithme�c Mean, 

WPGMA) between any two elements in each cluster. 

The WPGMA algorithm is a method for construc�ng a phylogene�c tree, known as a 

dendrogram, which represents the rela�onships indicated by a pairwise distance matrix or 

a similarity matrix. During the process, the algorithm pairs the two closest clusters, denoted 

by A and B, into a single, larger cluster represented by A∪B. The distance of this new cluster 

to another cluster, denoted by d(A∪B),X, is calculated as the arithme�c mean of the average 

distances from X to both A and X to B: 

dA,X +dB,X 

 
d

(A∪B),X  (39) 

• Centroid Linkage (CL) 

Centroid Linkage (CL) includes calcula�ng the average posi�on of each cluster (i.e., centroid), 

dA,B, and then measuring the distance between these central points: 

 dA,B = d(A¯,B¯) (40) 



 

• Ward Linkage (Ward’s Method) 

Ward Linkage (Ward’s Method) is an alterna�ve to SL. It calculates the increase in the total 

sum of squared errors. Essen�ally, the minimum variance criterion of Ward’s aims to keep 

the variance within each cluster as low as possible. In other words, we want to �nd two 

clusters A and B such that when they are combined, the increase in the total sum of squared 

within-cluster distances is least. And the distance between two clusters dA,B is the increase 

in overall sum of squared within-cluster distances: 

 dA,B = ∆(SSwithin) = SSwithin(T)−(SSwithin(A)+SSwithin(B)) (41) 

where: 

• ∆(SSwithin) is the increase in the sum of squares within clusters due to merging. 

• SSwithin(A) and SSwithin(B) are the sum of squares within the individual clusters A and 

B, respec�vely. 

• SSwithin(T) is the sum of squares within the new cluster T, formed by merging A and B. 

• Direct Bubble Hierarchical Tree Linkage (DBHT Clustering) 

The DBHT (Dynamic Branching Hierarchical Tree) clustering method is a graph-theore�c 

approach to extrac�ng clusters and hierarchies from complex datasets. It does so 

determinis�cally and without prior informa�on, which dis�nguishes it from many clustering 

methods that may require prior informa�on or supervision. The exact steps to perform DBHT 

Clustering are complex, but the general idea of DBHT Clustering is to form a bubble tree and 

select the CL method based on this bubble tree to form clusters. You can see a more detailed 

explana�on by Song et al. (2012). 

The tradi�onal linkage algorithms (i.e., ranging from SL to Ward’s method) begin by 

organizing distances between elements (such as stocks) from smallest to largest. They then 

create a dendrogram, which groups subsets based on these minimal distances, and 

determine the clusters by selec�ng a speci�c number of them. In contrast, the DBHT method 

inverts this sequence: it �rst iden��es clusters through topological analysis of a planar graph 
14, then establishes a hierarchy within and among these clusters. Thus, DBHT di�ers in the 

type of informa�on it uses and its overall procedural strategy. 

 
14 Planar Maximally Filtered Graph (PMFG); the PMFG is de�ned as a type of graph that consists of a set of 

ver�ces V, edges E, weights W assigned to E, and a set of distances D associated with E. 



 

Appendix B 

For two �me series X and Y, n = len(X) and m = len(Y). The DTW algorithm has a �me 

complexity of O(nm), capable of determining the precise op�mal solu�on for this issue. The 

pseudo-code in Python is as follows 15: 

1 def dtw(x, y): 
2 # Ini�aliza�on 3 for i = 1..n 
4 for j = 1..m 
5 C[i, j] = inf 
6 

7 C[0, 0] = 0. 
8 

9 # Main loop 
10 for i = 1..n 
11 for j = 1..m 
12 dist = d(x_i, y_j)**2 
13 C[i, j] = dist + min(C[i-1, j], C[i, j-1], C[i-1, j-1]) 
14 

15 return sqrt(C[n, m]) 

Here, d(xi,yj) = |xi −yj|, and in our case, n = m. DTW is a Dynamic Programming (DP) technique 

where each entry at row i and column j is updated based on the distance between asset x at 

�me i and asset y at �me j and the minimum of both these assets’ previous �me steps. 
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