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Abstract: 

The degradation of p-cresol is approved out under UV-visible light by TiO2 as a photocatalyst. In 

the direction of determining the efficiency of the photocatalyst, the, unlike variables, studied 

built-in the amount of photocatalyst, consequence of oxidants peroxomonosulphate (PMS) and 

peroxodisulphate (PDS) on the photocatalytic oxidation of       p-cresol on elucidation TiO2 

surface have been investigating. The efficiencies of these oxidants on photocatalytic degradation 

of p-cresol are compared with that of PMS and PDS.                  The investigational results 

indicate that these oxidants reveal improved rates of mineralization of p-cresol. A response 

mechanism, linking the production of hydroxyl radicals and sulfate radicals. In conclusion, this 

investigation indicated a high potential of TiO2 suspension to remove the high-level 

concentration of p-cresol under UV radiation.   

Keywords: Photodegradation, p-cresol, PMS, PDS, TiO2 Catalyst. 

1. INTRODUCTION: 

         Photocatalysis is a subject of interest in view of its prosperous application in pollutant 

decontamination. Photocatalysis takes the advantage of the ability of semiconductor 

photocatalyst to generate surface bound hydroxyl radical and trapped hole upon excitation by 

band gap light [1–3]. Basically, under illumination by suitable light, this process (Equations 1–8) 

produces hydroxyl radical and hole which are powerful oxidants that can degrade a variety of 

organic compounds [1,4,5].  

Photoexcitation: photocatalyst + hν → e
−
 + h

+
    (1) 

Adsorbed oxygen: (O2) ads +e
−
 → O2 

−•                 
   (2) 

Ionization of water: H2O → OH
−
 + H

+
                  (3) 

Protonation of superoxides: O2 
−•

 + H
+ 

→ HOO
•
   (4) 

HOO
•
 + e

−
 → HO2 

−
             (5) 

HOO
−
 + H

+ 
→ H2O2             (6) 

H2O2 + e
–
 → OH

−
 + OH

• 
      (7) 
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H2O + h
+ 

→H
+
 + OH

•
           (8) 

            Among the several semiconductor photocatalysts used, TiO2 has been considered the 

most superior in terms of suitability for application [6,7]. The current interest in ZnO is based on 

its high spectral response in UV region, which presumably, in some studies, resulted in higher 

efficiency of photocatalytic degradation well over TiO2 [8–12]. Based on the aforementioned, 

ZnO photocatalysis has been proposed as an alternative in the removal of various aqueous 

pollutants including phenolic compounds [13–19]. P-cresol as a phenolic compound has been 

listed as the priority [20]. Water solubility of p-cresol is above 21.5 g/L (25°C) [21]. Therefore, 

p-cresol can be a significant threat to surface water, groundwater sources, or generally the 

environment [7,22].The effective removal of p-cresol is currently an environmental problem 

[23,24]. In our previous works, the effect of operational parameters on photocatalytic 

degradation of m-cresol [25] and o-cresol [26] was reported by UV and visible/ZnO process. 

However, no study has been conducted on aquatic p-cresol photocatalytic degradation using ZnO 

under UV irradiation. We undertake to investigate the effect of operating parameters such as      

p-cresol concentration, amount of photocatalyst and pH on degradation efficiency. 

2. Experimental 

2.1 Investigational Methods 

           The photocatalytic experiment be passed out in a Pyrex cell of amount 100 ml. In every 

one the experiment, 50 mg of the photocatalyst powder (expect the experiments involving 

variation of catalyst amounts) were balanced in 70 ml of the substrate (p-cresol) solution, stirred 

magnetically at a invariable rate, and then irradiated. A 150 W tungsten-halogen lamp was used 

as the light resource. Samples for analysis were withdrawn at regular intervals of time.              

The catalyst was divided from the solution by filtration. The quantitative analysis of                   

p-cresol was carry out by a standard colorimetric process [27, 28]. The photodegradation of        

p-cresol was also confirmed by colorimetric estimation. The proportion of photodegradation was 

measured as follows: 

                                       Photodegradation % = 100[(C0-Ct)/C0]  

         Where C0 = initial concentration of p-cresol, Ct = concentration of p-cresol after          

photo-irradiation. All photocatalytic degradation experiments be approved out in duplicate. 

3. Results and discussion 

3.1 Photocatalytic degradation of m-chlorophenol 

         Photodegradation of p-cresol (1 x 10
-3

) in aqueous solutions at usual pH was perform in the 

presence of TiO2 photocatalyst (50 mg). Photocatalyzed disappearance of p-cresol before and 

after irradiation and as well as with or without oxidants (PMS and PDS). The photodegradation 

rate of p-cresol in the attendance of oxidants (PMS and PDS) was found to higher than that in the 

nonappearance of each of these oxidants. The added oxidant enhance of p-cresol oxidation rate 

drastically. In order to find the effect of these oxidants on the rate of decomposition of p-cresol, 

experiments were carried out at a constant concentration of p-cresol (1 x 10
-3

 mol dm
-3

), constant 

catalyst amount (TiO2 = 50 mg), and at constant pH (3.0 and 4.0) with various oxidants (PMS 

and PDS) by colorimetric method.   
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3.2 Factors influencing photocatalytic oxidation of p-cresol 

3.2.1 Result of the initial concentration of p-cresol 

       The results obtained for TiO2-PMS-m-Chlorophenol and for TiO2-PDS-p-Cresol system are 

offered in Table 2. The plots of Log (OD)t vs time for a range of initial concentrations of            

p-cresol are linear and from the slopes of the plots, the rate constants were calculated and 

tabulated (Table 2 and Figs.4 and 5). The plots of rate vs [p-cresol]0 (Table 2; inset of Figs. 4   

and 5) illustrate that p-cresol degradation increases with an increase in [p-cresol]0, reach a 

maximum, and remains approximately constant. The effect of [p-cresol]0 on rate could be 

describe by the following relation: 

rate =
kK[p-Cresol]0

1 + K[p-Cresol]0  
      Anywhere k and K are the proportionality and stability constants, respectively. The mutual of 

the above equation gives 

1

rate
=

1

kK [p-Cresol]0
+

1

k  
Table.2 Rate constants for the photodegradation of a selection of amounts of p-cresol in the 

presence of PMS and PDS  

[p-cresol]0 x 10
3
 mol dm

-3
 With PMS, k1 x 10

-3
 s

-1
 With PDS, k1 x 10

-3
 s

-1
 

1.0 15.12 11.87 

2.0 23.50 12.87 

3.0 33.00 14.75 

4.0 39.48 15.62 

5.0 46.25 16.25 

6.0 46.50 17.37 

TiO2 = 50 mg/70ml; T = 30
o
C; [PMS] = [PDS] = 1 x 10

-3
 mol dm

-3 

Fig.4 Log (OD)t vs time plot for the photodegradation of a selection of measure of                      
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p-cresol (1- 6 x 10
-3

M). [Catalyst] = 50 mg/70 ml and [PMS] = 1 x 10
-3

 mol dm
-3

. Inset show 

scheme of photodegradation rate for a mixture of amounts of p-cresol.  

 
Fig.5 Log (OD)t vs time plot intended for the photodegradation of a choice of amounts of            

p-cresol (1 - 6 x 10
-3

M). [Catalyst] = 50 mg/ 70 ml and [PDS] = 1 x 10
-3

 mol dm
-3

. Inset shows 

plot of photodegradation rate intended for a variety of amounts of p-cresol.  

             The plots of 1/rate vs 1/ [p-cresol]0 are straight lines with intercepts on the ordinate 

representing Langmuir kinetics. The standards of the proportionality constant k and equilibrium 

constant K are evaluated (Table 3). For the TiO2-PMS-p-Cresol system, the values of k and K are 

found to be 6.20 x 10
-6

 mol dm
-3

 s
-1

 and 155.88 dm
3
 mol

-1
, in that order. The standards of k and 

K for the TiO2-PDS-p-Cresol classification are 9.10 x 10
-6

 mol dm
-3

 s
-1

 and 826.66 x 10
3
 dm

3
 

mol
-1

, respectively.    

3.2.2 Effect of concentration of the oxidant ([PMS] or [PDS]) 

      The results obtain are to be had in Figs. 6 and 7. From the plot of rate vs [oxidant], it is seen 

that the rate of decomposition of p-cresol increases linearly with increases in the absorption of 

the oxidant. 

Table.3 Valuation of k and K for the photodegradation of a variety of amounts of                       

p-cresol TiO2 = 50mg/70ml; T = 30 
0
C; [PMS] = [PDS] = 1 x 10

-3
 mol dm

-3 

 

1/[ p-cresol]0 x 10
-3

 mol
-1

 dm
3
 

With PMS, 1/rate x 10
-6

  mol
-1

 

dm
3
 s 

With PDS, 1/rate x 10
-6

 mol
-1

 

dm
3
 s 

1.00 6.61 8.69 

0.50 4.25 4.82 
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0.33 3.03 3.50 

0.25 2.53 2.66 

0.20 2.16 2.22 

0.16 2.15 2.26 

k = (mol dm
-3

s
-1

) 2.90 x 10
-6

 1.90 x 10
-6

 

K = (dm
-3

 mol
-1

) 103.15 153.73 

 
Fig.6 Log (O.D)t vs time plot for the photodegradation of p-cresol for a variety of concentration 

of PMS (1.0 – 6.0 x 10
-3

M). [Catalyst] = 50 mg/70 ml and [p-cresol] = 1 x 10
-3 

mol dm
-3

. Inset 

show plot of photodegradation rate of p-cresol used for
 
a range of concentrations of PMS. 

3.2.3 Effect of catalyst amount    

            The rate increases originally with an increase in the catalyst amount and reach a 

maximum and then gets decrease (Figs.8 and 9). This due to the fact that with increasing catalyst 

amount, absorption of light by photocatalyst particles also increases. Therefore, the rate of 

degradation of p-cresol also increases. Subsequent to a certain limit, there is a decrease in the 

rate experimental. This is due to the allocation of light by the catalyst particles, which is 

answerable designed for the lessening in the rate. 

3.2.4 PMS an effective oxidant for the photocatalytic degradation of p-cresol 

             A calculate approximately of the efficiency of the oxidants (PMS and PDS) for the 

Photocatalyzed degradation of p-cresol (1 x 10
-3

 mol dm
-3

) was obtained by compare the results 

of the experiments carried out under identical conditions but with different oxidants (PMS and 

PDS [Oxidant] = 1 x 10
-3

 mol dm
-3

). Pure TiO2 without any oxidants shows 8 % degradation of 

p-cresol in 40 min, which is enhanced to 80 % in the presence of PDS. PMS have similar activity 

and they enhance the decomposition of p-cresol up to 54 % under the same clarification time 

(Table 4). An improved effectiveness of PMS over PDS can be modernized as PMS gets 
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decomposed through e
-
CB and h

+
VB of the semiconductor photocatalysts whereas PDS can be 

rotting only by e
-
CB [29, 30] and the enter reactions are represented below. 

 
Fig.7 Log (O.D)t vs time plot for the photodegradation of p-cresol for a diversity of 

concentration of PDS (1.0 – 6.0 x 10
-3

 M). [Catalyzed] = 50 mg/70ml and                                  

[p-cresol] = 1 x 10
-3

 mol dm
-3

. Inset shows plot of photodegradation rate of p-cresol for a variety 

of concentrations of PDS. 

 
Fig.8 Log (O.D)t vs time plot for the photodegradation of p-cresol for a range of concentrations 

of TiO2 (20-100 mg). [PMS] = 1 x 10
-3

 mol dm
-3

 and [p-cresol] = 1 x 10
-3

 mol dm
-3

. Inset show 

plot of photodegradation rate of p-cresol used for a range of concentrations of TiO2. 
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Fig.9 Log (O.D)t vs time plot for the photodegradation of p-cresol for various concentration of 

TiO2 (20-100mg). [PDS] = 1 x 10
-3

 mol dm
-3

 and [p-cresol] = 1 x 10
-3

 mol dm
-3

. Inset shows plot 

of photodegradation rate of p-cresol for various concentration of TiO2. 
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Table.4 Evaluation of photocatalytic efficiencies of PMS and PDS on photocatalytic 

disintegration of p-cresol 

System k1 x 10
3
 s

-1
 

TiO2- p-Cresol 5.12 

TiO2-PMS- p-Cresol 26.12 

TiO2-PDS- p-Cresol 17.37 

 

Tble.5 Evaluation of photocatalytic percentage degradation of PMS and PDS on                        

p-Cresol 

System % degradation 

TiO2- p-Cresol 16.59 

TiO2-PMS- p-Cresol 83.79 

TiO2-PDS- p-Cresol 61.51 

 

With PDS: 

S2O8
2- + e-

CB                   SO4
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4. Mechanism  

      When the photons of the bandgap energy (greater than 3.2 eV) fall on TiO2 semiconductor 

particle, an e
-
 - h

+
 pairs are generate. 

TiO2
h

>390 nm
h+ VB + e- CB

 
 In an oxygenated solution, the following reactions occur: Oxygen adsorbed on the 

anatase surface prevents the recombination of electron-hole pairs by trapping the electrons     

[31-35]. 

O2 (ad.)  +  e- 
CB O2 (superoxide ion) 

It is likely that H2O2 is formed from O2
.-
 according to the following reaction [33, 35, 36]. 

O2 + H+ HO2

HO2 H2O2 + O2

O2 + HO2 O2 + HO2

HO2 + H+ H2O2 2 OHh

+ HO2

 
 On the other hand, holes react with either H2O or OH

-
 adsorbed on TiO2 surface to give 

hydroxyl radicals. 

 
 Hydroxyl radical attacks trihydric phenol p-cresol to form a product namely is further 

degraded into carbon dioxide and water. 

Further oxidised products CO2 + H2O

OH

OH

P-Cresol

+

CH3

 
 Under prolonged irradiation, p-cresol may additional degrade form to CO2 and H2O 

finally. There remainder the opportunity that photogenerated holes react with p-cresol adsorbed 

on TiO2 to give p-cresol radicals’ cations, as has been projected by the photocatalytic oxidation 

of benzene by Hashimoto et al., [37-55].   

 The adding together of HOOSO3
-
 and S2O8

2-
 to the response system will produce 

.
OH and 

SO
4.-

 by the reaction of e
-
CB with these oxidants, 

 
 These radicals enhance the oxidation of p-cresol and hence the rates of disappearance of 

p-cresol in presence of these oxidants are more (Tabs. 4 and 5) than those in the absence of them. 

H2O (ad.) + h+
VB

.OH + H+

OH- (ad.) + h+
VB .OH + OH-

HOOSO3
- + e-

CB SO4
.- + OH- or  SO4

2- + .OH

S2O8
2-

+ e-
CB SO4

2- + SO4
.-
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5. Conclusions 

             The incidence learning develops a number of basic facial appearances regarding the 

concert of photocatalytic degradation of p-cresol in the presence of oxidants when exposed to 

visible light. The manipulation of elementary parameters such as catalyst amount, the 

concentration of substrate, and the concentration of oxidants is nowadays conventional, opening 

the way for the added expansion of these systems. Express photodegradation rates are 

experimental with PMS as an oxidant, with the aim of PMS being a more well-organized oxidant 

than PDS for the photocatalyzed degradation of p-cresol. 
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