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abstract 

Continuum mechanical issues for both deformable 

and rigid solids, as well as fluids, are discussed in 

this study. All systems are approximated using the 

same finite element method. Particularly, we 

provide a standard displacement-based formulation 

for the deformable solids and use this framework to 

describe the transformation of the solid into a rigid 

body in the limit of infinite stiffness. Last but not 

least, we show how to immerse a discretized solid 

into a fluid for fluid-structure interaction issues. 

Introduction 

Oftentimes, a mechanical system may be thought of 

as a continuum, regardless of how its parts are 

physically interpreted (see Malvern [12]). Both the 

Eulerian and Lagrangian descriptions of the local 

balance of momentum are possible within this 

continuum mechanical framework. Due to the lack 

of a universal analytical solution for the considered 

initial boundary value issue, we use a space-time 

finite element solution approach to approximate 

and solve the weak form of the problem (see 

Hughes [10] for more details). Since the employed 

degrees of freedom are no longer independent 

when bodies are assumed to be stiff, a numerical 

solution cannot be attained inside the typical finite 

element framework. The finite element system may 

be rewritten in terms of a skew coordinate system 

based on a special Caserta theory (see Rubin [13] 

for details).  

By include the rigidity assumptions inside this 

reformed system, a set of differential-algebraic 

equations (DAEs) regulating the motion of the rigid 

body may be obtained. It will be shown that skew 

coordinate systems are required due to interpolation 

problems in the director field. These DAEs are the 

result of a rotation-free formulation made possible 

by using the new coordinate system directly; for 

details, see Bertsch [5]. If we use an appropriate 

null-space approach (see Bertsch [1]), we may 

further reduce these DAEs to a minimal set of 

equations in terms of generalized coordinates, and 

thereby recover the classical Newton-Euler 

equations. Finally, we demonstrate how to generate 

an appropriate Euler-Lagrange mapping when 

immersing a solid in a fluid using the underlying 

finite element framework (Liu et al. [11] and 

Hersch et al. [8]). Since the solid is seen as a 

momentum source field emerging from the fluid, 

this interpretation holds. Since we don't have to 

Ramesh the fluid at each stage, this approach is 

preferable for fluid-structure interaction issues. 

Similar methods have been used to submerge 

particles;however, they rely on the contributions of 

nodal forces rather than the field equations for the 

solid (Hu et al. [9]). 

Continua 

In this part, we quickly summarize the key 

equations that need to be understood. While fluids 

are modelled using a Eulerian framework in the 

real con figuration B R 3, developments involving 

solids are based on a broad non-linear approach 

inside a Lagrangian framework defined in its 

reference configuration B0 R 3. In the first part, we 

review the fundamental equations for a hyperplastic 

body that may undergo deformation, and in the 

second section, we modify this formulation to 

include the characteristics of a rigid body. 

Subsection three provides a concise review of 

fluids. 

The Mechanics of Materials Subjected 

to a Discrete Strain 

To begin, let's think about a deformation mapping 

that changes over time: B0 [0, T] R 3, where [0, T] 

represents the time range between the beginning 

and conclusion of the motion. Specifically, = (, t) 

represents the equivalent mapping of the surface. 

Please be aware that the limits must. 

 

where u represents the Dirichlet boundary and the 

Neumann boundary. For the present state, write but 

= t. (B0). For simplicity, we will refer to material 

locations as X B0, material velocity as = /t, and 

deformation gradient as F = D. On top of that, we 

assume the presence of a strain energy function 

(C): B0 [0, T] R, where C is the right Cauchy-

Green deformation tensor and C = F T F. The 
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formula for the linear momentum is v =, where is 

the density of the reference configuration and is the 

velocity. This leads to the following Lagrangian 

expression for the linear momentum conservation: 

 

enhanced by the boundary conditions 

 

The first Piola-Kirchhoff stress tensor is denoted by 

P = 2FC(C), the external tractions at the Neumann 

boundary are denoted by T, and a body force is 

denoted by B. More so, the material time derivative 

is shown as a superimposed dot. For the 

continuation, we will be using the following 

notation. 

 

Then write out how a physical being adds value to 

the digital project: 

 

By adding a collection of finite elements e E h to 

the initial state B0 through a spatial discretization 

technique, we are able to generate a numerical 

solution to the nonlinear issue at hand. 

 

We present finite dimensional approximations of 

and using a finite element method that is based on 

displacements. 

 

where the global configuration vector q = [q1,node] 

is the set of nodal values of the configuration 

mapping at time t, where a = (XA, t), A, B = 

1,node. As an added bonus, the global shape 

functions connected to nodes A are denoted by the 

notation N A (X): B h R. It is now possible to 

express the kinetic energy of the discrete system as 

 

Take note that the associated discrete mass matrix 

has coefficients that read 

 

, where I am the identity matrix and R is the square 

root of three. Following this, we define the discrete 

deformation gradient and the discrete deformation 

tensor. 

 

The inner potential function is defined as follows, 

using the previously provided description of the 

local strain energy density function: 

 

As a result, we may represent virtual labour in 

discrete units as 

 

where S  C h = 2∇CΨ (C h) denotes the second 

Piola-Kirchhoff stress tensoar. Furthermore, we 

assume the existence of an external potential 

energy function. 

 

in addition, we derive a statement of the external 

contributions to the virtual labour done in discrete 

units. 
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Since it is required that (5) holds true for every 

given test function, we end up with a universal 

nonlinear set of equations, 

 

It requires a suitable time stepping technique for 

resolution. Therefore, we partition the period under 

consideration into a set of subintervals, nn+1, and 

get 

 

where ∇V int (qn+1,an) represents the discrete 

gradient in the sense of GonziLez [7]. Note that 

(17) conserves algorithmically energy and both 

momentum maps, see Bertsch& Steinmann [3]. 

 

 

Bodies with a rigid structure 

After introducing a discrete and deformable 

system, we now wish to impose enough constraints 

on it that it does not change shape at all throughout 

the period of time under consideration. Using the 

Caserta point theory (see Rubin [13]), we introduce 

a local coordinate system that is fixed to the 

reference position of the body at a point X 1 and 

uses convective coordinates I to determine the 

location of each point in the mesh. 

 

Here, di(t) R 3 is the non-orthogonal director frame 

at time t, and (X, t) R 3 is the position vector of the 

reference point at time t. The kinematic foundations 

of body stiffness are stated as 

 

i.e., the convective coordinates θ Iam not a function 

n of time and the director triad does not deform. 

The motion of the rigid body is now characterized 

only by its kinetic energy and the constraints in 

(Eq. 19), since no internal stresses appear, i.e., V 

int(q) = 0, ∀t ∈ [0, T]. Analogues to (Eq. 8), we can 

now write for the kinetic energy 

 

utilizing the speed that would be expected given 

(18) 

 

and the elementwise integration 

 

where R = [d1 d2 d3], R ∈ R 3×3. For convenience, 

we introduce the extended position vector q¯ = [ϕ¯, 

d1, d2, d3] T, q¯ ∈ R 12 and obtain the 

corresponding constant mass matrix of the rigid 

body by inserting (22) into (21) 

 

Keep in mind that if (X, t) is placed at the body's 

center of mass, then e I = 0 and if the directors di 

are orthonormal and coincide with the primary axis 

of inertia, then the matrix E will be diagonal. Next, 

we rewrite the external contributions in terms of the 

convective coordinates, assuming that the body 

force B (I t) and the Neumann boundary 

contributions T (I t) can be expressed in terms of 

the convective coordinates, as follows: 

 



Journal of Contemporary Issues in Business and Government Vol. 25, No. 01, 2019  
https://cibgp.com/         

                                                                                  P-ISSN: 2204-1990; E-ISSN: 1323-6903  

                                                                                  DOI: 10.47750/cibg.2019.25.01.033 
 

International Conference on Trending Application in Science and Technology 
 

359 
 

 

 

 

Keep in mind that the kinematic connection vi = di 

where R 3 indicates the angular velocity allows us 

to relate Neumann contributions to the director 

momentum in terms of an external torque m. This 

motivates us to determine the external torque's 

power contributions. 

 

and obtain for the external director momentum 

 

The constant application of external torque (30) 

was first suggested in Bertsch et al. Finally, we use 

(20) to calculate the constraint forces, which are 

expressed as follows: 

 

as well as collect data on how much of the virtual 

labour is due to constraints 

 

Since the constraints (31) do not depend on ϕ (X¯, 

t), f c = 0. The remaining terms are given by 

 

where I am a multiplier of the Lagrange type. A 

nonlinear set of equations analogous to (16) 

 

It once again has to be addressed by a method of 

time stepping that works. This time around, too, we 

use a rule of thumb based on the midpoint (see 

Bertsch& Steinmann [4]) 

 

while taking into account the constraints on the 

system. Several mechanical parameters, including 

total energy and the components of angular 

momentum, are algorithmically conserved by the 

chosen kind of a midpoint rule. It is important to 

keep in mind that the limitations in (31) are met at 

time n + 1, and not at time n + 1/2. 

Fluids 

Here, we propose a finite element formulation of 

fluids as a first step toward describing the 

interaction of fluids and structures in the future. 

This leads us to express the fluid system in terms of 

a Eulerian description through the inverse mapping 

X = 1 (x(t), t). It is obvious that f (x(t), t) is the time 

differential of a physical quantity. 

 

We focus on the incompressible situation without 

sacrificing generality, and derive the continuity 

condition. 

 

where J = det(F). For a Newtonian fluid the Cauchy 

stress tensor σ: B × [0, T] → R d×d is defined by 

 

In this case, the force exerted by the pressure p: B 

[0, T] R may be thought of as a Lagrange multiplier 

(37). Additionally, in this context, stands for 
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dynamic viscosity. The linear momentum balance 

may be written in the Eulerian form. 

 

where and b represent the actual density and a body 

force that has been specified for this arrangement. 

The equation of balance, expressed in its weak 

form, looks like 

 

added to the limitations 

 

By applying the Lagrange multiplier field analogy 

to (Eq. 7) and using a conventional Galperin based 

discretization of the velocity, we get the semi-

discrete balance of momentum. 

 

together with the semi-discrete incompressibility 

criterion 

 

A stabilization mechanism for the underlying 

Galperin approach may be used if required (e.g., 

for low order elements or high Reynolds numbers) 

(cf. Tezpur [14]) with the help of Enhanced Spaces 

for Testing Functions 

 

where SUPG, PSPG, and LSIC are stabilizer 

parameters determined beforehand. The updated 

semi-discrete linear momentum balancing formula 

is as follows: 

 

and the kinematic constraint 

 

The initial momentum residuals Rv and the 

kinematic constraint residuals Rp are the quantities 

of interest here. It is possible to make a temporal 

discretization of equations (42) and (43) by using 

the midpoint type rule discussed before. 

 

The completely discrete stabilized version is 

provided in full in Hersch et al. [8], so it's easy to 

see where this is going. 

Interaction between fluid and structure 

Whenever we need to determine how a fluid will 

react to a solid, we do it by completely submerging 

the solid system in the fluid under (see Liu et al. 

[15]). Here we reformulate (Eq. 39) to include the 

resultant forces of the solid system, located in the 

domain B s t at time t as volumetric force F: B s t 

[0, T] R 3 into the fluid's linear momentum 

balance. 2 

 

The force field of the immersed solid reads 

 

Pushing forward the purely material derivative of 

the strain energy function allows us to derive the 

solid's true stress field. 

 

Lagrangian mapping is used for the submerged 

solid because of its physical qualities, whereas 

Eulerian mapping is used for the fluid. For each 

function of the solid system, we need to define a 

Euler-Lagrange mapping IB s t in the space B s t B 
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such that (x, t) translates to IB s t ((X, t)): B s 0 [0, 

T]. In part because of this, we've decided to chart 

 

We finish up the system of equations by defining 

proper Dirichlet boundary conditions for the 

submerged solid. 

 

Because the solid is enveloped by the fluid, extra 

Neumann boundary conditions are not explicitly 

considered. As  

a result, the equivalent weak form is as follows: 

 

and for the constraints 

 

Similar to (45), we consider the spatial 

discretization of the fluid and instead concentrate 

on the discretization of the volumetric force field of 

the submerged solid. 

 

where we use an IFEM approach for the Euler-

Lagrange mapping 

 

See Hersch et al. [8] for an easy-to-follow 

explanation of the time-consuming but worthwhile 

process of discretization. 

Real-World Illustration with Numbers 

In this case we see how submerged approaches may 

be used to solve bivascular issues in an automobile. 

As a result, we think of blood as being 

incompressible. With a density of 1105 and a 

viscosity of 1, a new toning fluid is very viscous. 

To the left of the channel, a Poiseuille inflow is 

applied with the amplitude function A(t) = 5 

(sin(2t) + 1.1), whereas the right-hand side of the 

channel has no boundary conditions put on it (see 

Fig. 1). With the Lame' parameters s = 8 106 and s 

= 2 106, the flaps are represented as Neo-Hookean 

solids with a Young's modulus of E = 5.6 106 and a 

Poisson ratio of v = 0.4. As the space between the 

two flaps represents insufficiency in a human heart 

valve, you may think of them as a model (cf. Gil et 

al. [6] 

. 

 

Figure 1: The geometry and boundary conditions 

for two fluttering membranes. 

Using 256x64 Q1Q1 fluid and 40x4 bilinear solid 

components, Fig. 2 depicts the temporal 

development of the pulsatile flow. 
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Fluid membranes and streamlines with time (Fig.2) 

 

the X and Y movement of the top leaflet tip for 

various discretization’s. If the mesh size is small 

enough, the Q1Q1 fluid finite element 

discretization yields the same results as the Q2Q1 

discretization. The converged findings correspond 

exactly with those produced by Gil et AL 

Immersed.'s Structural Potential Method (ISPM) in 

their paper [6]. Hersch et al. [8] provide a 

comprehensive comparison of these various 

submersion methods. 

Conclusions 

For the first time, we have introduced a non-linear 

framework for deformable bodies based on a 

generic  

 

continuum mechanical description. Just a moment 

 

Figure 4: The Y-position of the top leaflet's tip in 

the limit of infinite stiffness, a new, more general 

method has been developed to reformulate the 

discretized body as a restricted system with a 

redundantdent set of coordinates. Rigid body 

coordinates are not constrained in any way, 

allowing for the use of non-equidistant or otherwise 

non-standard coordinate systems. 

This is crucial because it allows us to correct for 

the directors' interpolation problems, for instance 

by using a mid-point type rule for the discretization 

in time. Our work culminates in a demonstration of 

how to fully submerge a system into a fluid, with 

the solid being treated as a momentum source field 

in the fluid. This future study will extend the rigid 

body assumptions to the immersed system, 

allowing for a simple and direct treatment of rigid 

bodies in fluids. This page lays the groundwork for 

the rest of the project. 
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